0

大学基础化学实验报告格式模板(优秀20篇)

浏览

1998

范文

89

篇1:大学化学创新实验报告模板_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 1148 字

+ 加入清单

大学化学创新实验报告模板

这次参加创新实验,让我受益匪浅。回想起过去一年里参加创新实验的过程, 从开始的找老师寻找课题到撰写项目申请书,到查阅相关参考资料,咨询相关老师学长,确定实施方案与寻找创新点到撰写项目任务书; 并制定详细的研究方案和步骤;整个实验过程使我学到了很多我所感兴趣的、与专业有关的东西,更重要的是我的动手能力、创新能力、思维能力、团队协作能力都得到了锻炼。在实验初期,由于知识方面的欠缺,实验进度很慢,而且好多失败。通过询问指导老师、咨询技术员,查阅相关资料和组员们的思考讨论,找出了失败的原因。在此过程中我深刻的体会到实验最重要的是细心和耐心不怕失败的决心。最后我们采用单一循环法调整实验中配方的组成,设计出跟自己原料相符的配方,最后取得了预期成果。

能力培养方面

首先是创新思维的整体提升,在自己的已有的知识层面上进行陌生知识的学习与理解,不仅仅是学习难度的提升,更是创新意识的培养。大二上学期接触水性木器漆,刚开始对这方面一窍不通,学习难度很大,很多知识对于我们的眼界都是很难想象的,有时候更是一脸茫然的,陌生带给我们恐惧与畏怯,但同时带给我们惊奇与渴望。这期间让我在创新思维上有了提升。

其次在合作能力上,也得到了很大的提升。创新实验内容较多,历时较长,仅靠一个人的努力很难获得成功。从项目开始到结尾,每个人都时刻在提出自己的意见与学习心得,工作的分担以及相互的交流让我少走了很多弯路。

最后在创新实践方面,最深的体会就是首先要确定创新的方向和目标,其次善于勤于思考,主动动手动脑。创新实验是一个长期的,复杂的实验,不是只要按着老师讲的步骤做就行了。每一步都需要独立思考。其中会遇到很多困难,这个时候除了寻找帮助,最重要的还是自己思考。通过思考与改进,使实验产品更加完善。

素质提高方面

通过这次大学生创新实验项目,不仅在学习实践方面收获颇多,也让我在为人处事方面更加成熟稳重。创新实验极大地磨砺了我的耐心与细心,也让我学会了坚持与不怕失败的精神,我的与人沟通的能力也有所提升,结识了不少良师益友。与此同时,它也提高了扩展思维能力增强了合作意识,在实践方面也有很大的提升。希望以后还能更多地参加类似的活动,充实我的大学生活。

过去一年的实验过程使我学到了很多我所感兴趣的、与专业有关的东西,更重要的是我的动手能力、创新能力、思维能力、团队协作能力都得到了锻炼,此外创新实验极大地磨砺了我的耐心与细心。在实验初期,由于知识方面和经验方面的欠缺,实验一直失败。通过询问指导老师,查阅相关资料和我们的积极思考

讨论,最终找到了失败的原因。在此过程中我深刻的体会到实验最重要的是细心和耐心不怕失败的决心。最后我们采用单一循环法调整实验中配方的组成,设计出跟自己原料相符的配方,最后取得了预期成果。

展开阅读全文

篇2:大学物理演示实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 465 字

+ 加入清单

大学物理演示实验报告

实验目的:通过演示来了解弧光放电的原理

实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。

雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。

简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。

实验现象:

两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。

注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,

实验拓展:举例说明电弧放电的应用

展开阅读全文

篇3:大学物理演示实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 449 字

+ 加入清单

大学物理演示实验报告

学物理演示实验报告--避雷针

一、演示目的

气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。

二、原理

首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。

三、装置

一个尖端电极和一个球型电极及平板电极。

四、现象演示

让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

五、讨论与思考

雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么?

展开阅读全文

篇4:深圳大学物理化学实验报告实验一 恒温水浴的组装及其性能测试赖凯涛、张志诚_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 1328 字

+ 加入清单

深圳大学物理化学实验报告--实验一 恒温水浴的组装及其性能测试--赖凯涛张志诚

深圳大学物理化学实验报告

实验者: 赖凯涛、张志诚 实验时间: 2000/4/3

气温: 21.6 ℃ 大气压: 101.2 kpa

实验一 恒温水浴的组装及其性能测试

目的要求 了解恒温水浴的构造及其构造原理,学会恒温水浴的装配技术; 测绘恒温水浴的灵敏度曲线; 掌握贝克曼温度计的调节技术和正确使用方法。 仪器与试剂 5升大烧杯 贝克曼温度计 精密温度计 加热器

水银接触温度计 继电器 搅拌器 调压变压器

实验步骤 3.1 实验器材,将水银开关、搅拌器等安装固定。按电路图接线并检查。

3.2 大烧杯中注入蒸馏水。调节水银开关至30℃左右,随即旋紧锁定螺丝。调调压变压器至220v,开动搅拌器(中速),接通继电器电源和加热电源,此时继电器白灯亮,说明烧杯中的水温尚未达到预设的30℃。一段时间后,白灯熄灭,说明水温已达30℃,继电器自动切断了加热电源。

调节贝克曼温度计,使其在30℃水浴中的读数约为2℃。安装好贝克曼温度计。关闭搅拌器。每1分钟记录一次贝克曼温度计的读数,一共记录12个。 开动搅拌器,稳定2分钟后再每1分钟记录一次贝克曼温度计的读数,一共记录12个。 将调压变压器调至150v(降低发热器的发热功率),稳定5分钟,后再每2分钟记录一次贝克曼温度计的读数,一共记录10个。 实验完毕,将贝克曼温度计放回保护盒中,调调压变压器至0v。关闭各仪器电源并拔去电源插头。拆除各接线。 4 实验数据及其处理

表1 不同状态下恒温水浴的温度变化,℃

220v,不搅拌

4.170

4.130

4.080

4.030

4.010

4.070

4.160

4.155

4.150

4.130

4.115

4.095

4.070

4.055

4.030

4.010

220v,搅拌

4.540

4.620

4.610

4.570

4.510

4.465

4.420

4.370

4.320

4.270

4.220

4.180

4.130

4.090

4.740

4.940

150v,搅拌

4.810

4.680

4.610

4.510

4.410

4.315

4.225

4.130

4.440

4.680

4.580

4.490

4.390

4.320

4.230

4.140

图1 不同状态下恒温水浴的灵敏度曲线

讨论 5.1影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。如果加热器功率过大或过低,就不易控制水浴的温度,使得其温度在所设定的温度上下波动较大,其灵敏度就低;如果搅拌速度时高时低或一直均过低,则恒温水浴的温度在所设定的温度上下波动幅度就大,所测灵敏度就低。若贝克曼温度计精密度较低,在不同时间记下的温度变化值相差就大,即水浴温度在所设定温度下波动大,其灵敏度也就低;同样地,接触温度计的感温效果较差,在高于所设定的温度时,加热器还不停止加热,使得浴槽温度下降慢,这样在不同的时间内记录水浴温度在所设定的温度上下波动幅度大,所测灵敏度就低。

5.2要提高恒温浴的灵敏度,应使用功率适中的加热器、精密度高的贝克曼温度计接触温度计,及水银温度计所使用搅拌器的搅拌速度要固定在一个较适中的值,同时要根据恒温范围选择适当的工作介质。

展开阅读全文

篇5:深圳大学物理化学实验报告实验一 恒温水浴的组装及其性能测试张子科、刘开鑫_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 950 字

+ 加入清单

深圳大学物理化学实验报告--实验一 恒温水浴的组装及其性能测试--张子科刘开鑫

深圳大学物理化学实验报告

实验者:张子科、刘开鑫 实验时间: 2000/4/17

气温: 21.7 ℃ 大气压: 101.7 kpa

实验一 恒温水浴的组装及其性能测试

1目的要求

了解恒温水浴的构造及其构造原理,学会恒温水浴的装配技术; 测绘恒温水浴的灵敏度曲线; 掌握贝克曼温度计的调节技术和正确使用方法。

2仪器与试剂

5升大烧杯 贝克曼温度计 精密温度计 加热器

水银接触温度计 继电器 搅拌器 调压变压器

3数据处理:

实验时间

4/17/2000

室温 ℃

21.7

大气压pa

101.7*10^3

1

2.950

2.840

2.770

2.640

2.510

2.650

2.620

2.530

2.420

2.310

2.560

2.510

2.420

2.310

2.200

2

3.130

2.980

2.950

3.110

2.930

3.730

3.090

2.930

3.600

3.050

2.880

3.220

2.970

3.150

3.170

3

2.860

2.950

3.210

2.860

2.940

3.150

2.840

2.920

3.040

2.930

2.910

3.040

2.910

2.860

2.970

曲线图:

4思考:

影响恒温浴灵敏度的因素主要有哪些?试作简要分析. 答: 影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。如果加热器功率过大或过低,就不易控制水浴的温度,使得其温度在所设定的温度上下波动较大,其灵敏度就低;如果搅拌速度时高时低或一直均过低,则恒温水浴的温度在所设定的温度上下波动就大,所测灵敏度就低。若贝克曼温度计精密度较低,在不同时间记下的温度变化值相差就大,即水浴温度在所设定温度下波动大,其灵敏度也就低,同样地,接触温度计的感温效果较差,在高于所设定的温度时,加热器还不停止加热,使得浴槽温度下降慢,这样在不同的时间内记录水浴温度在所设定的温度上下波动大,所测灵敏度就低。

欲提高恒温浴的控温精度(或灵敏度),应采取些什么措施? 答: 要提高恒温浴的灵敏度,应使用功率适中的加热器、精密度高的贝克曼温度计接触温度计,及水银温度计所使用搅拌器的搅拌速度要固定在一个较适中的值,同时要根据恒温范围选择适当的工作介质。

展开阅读全文

篇6:深圳大学物理化学实验报告燃烧热的测定谢佳澎 苏竹_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 885 字

+ 加入清单

深圳大学物理化学实验报告--燃烧热的测定--谢佳澎 苏竹

深圳大学物理化学实验报告

实验者: 谢佳澎 苏竹 实验时间: 2000/3/5

气温: 24.5 ℃ 大气压: 101.47 kpa

燃烧热的测定

目的要求 一,用氧弹热量计测定萘的燃烧热

二,明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别

三,了解热量计中主要部分的作用,掌握氧弹热量计的实验技术

四,学会雷诺图解法校正温度改变值

仪器与试剂 氧弹卡计 贝克曼温度计 普通温度计 压片器 分析天平 台秤 万用电表 点火丝 剪刀 直尺镊子 扳手 苯甲酸 柴油 氧气钢瓶 氧气减压阀

实验数据及其处理 贝克曼温度计读数

苯甲酸

柴油

苯甲酸

柴油

样品质量 g

序号

初段

末段

初段

末段

w2

w2

1

2.157

3.458

1.528

3.440

2.2500

39.1769

2

2.162

3.461

1.533

3.480

w1

w1

3

2.169

3.464

1.538

3.520

1.5718

38.5392

4

2.175

3.467

1.541

3.550

样重

样重

5

2.180

3.469

1.542

3.558

0.6782

0.6377

6

2.185

3.470

1.544

3.561

点火丝

7

2.190

3.471

1.546

3.568

l2

l2

8

2.194

3.472

1.547

3.570

20

20

9

2.198

3.473

1.549

3.575

l1

l1

10

2.203

3.475

1.550

3.572

16

5.8

消耗

消耗

4

14.2

初段斜率

初段截距

初段斜率

初段截距

0.0051

2.153

0.0023

1.529

末段斜率

末段截距

末段斜率

末段截距

0.0018

3.458

0.0131

3.467

升温中点

12

升温中点

12.5

中点低温

中点高温

中点低温

中点高温

2.215

3.480

1.558

3.625

温升

1.265

温升

2.066

水值j/℃

14191

热值 j/g

45920

4 实验讨论 固体样品为什么要压成片状? 答:压成片状易于燃烧,和氧气充分接触,且易于称中。

2. 在量热学测定中,还有哪些情况可能需要用到雷诺温度校正方法?

答:实验中要用到温度差校正的都可以用。

3. 如何用萘的燃烧数据来计算萘的标准生成热?

答:代入公式计算。

展开阅读全文

篇7:深圳大学物理化学实验报告燃烧热的测定朱锡衡、张峰、何光涛_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 961 字

+ 加入清单

深圳大学物理化学实验报告--燃烧热的测定--朱锡衡张峰何光涛

深圳大学物理化学实验报告

实验五 燃烧热的测定

实验者: 朱锡衡、张峰、何光涛 实验时间: 2000/4/7

气温: 22.2 ℃ 大气压 : 101.6 kpa

一、实验目的及要求:

1、用氧弹热量计测量苯甲酸的燃烧热

2、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。

3、了解热量计中主要部分的作用,掌握氧弹热量计的实验技术。

4、学会雷诺图解法校正温度改变值。

二、仪器与试剂

氧弹卡计

贝克曼温度计

普通温度计

压片器

分析天平、台秤

万用电表

点火丝、剪刀、直尺

镊子、扳手

苯甲酸

柴油

氧气钢瓶及氧气减压阀

三、数据记录表格

贝克曼温度计读数(每半分钟一次)

贝克曼温度计读数

苯甲酸

柴油

苯甲酸

柴油

样品质量 g

序号

初段

末段

初段

末段

w2

w2

1

1.825

3.640

1.219

2.542

2.5504

38.137

2

1.826

3.641

1.218

2.550

w1

w1

3

1.827

3.648

1.215

2.558

1.5707

37.6068

4

1.827

3.650

1.212

2.560

样重

样重

5

1.827

3.656

1.212

2.560

0.9797

0.5302

6

1.827

3.657

1.210

2.560

点火丝

7

1.828

3.657

1.210

2.560

l2

l2

8

1.829

3.657

1.209

2.559

21.5

20

9

1.829

3.657

1.209

2.559

l1

l1

10

1.829

3.657

1.208

2.557

14.9

13.7

消耗

6.6

6.3

初段斜率

初段截距

初段斜率

初段截距

0.0004

1.825

-0.0012

1.219

末段斜率

末段截距

末段斜率

末段截距

0.002

3.641

0.0012

2.550

升温中点

12

升温中点

12.5

中点低温

中点高温

中点低温

中点高温

1.830

3.665

1.204

2.564

温升

1.835

温升

1.360

水值j/℃

14137

热值 j/g

36229

四、思考题:

1、固体样品为什么要压成片状?

答:因为粉末状的样品在充氧时会到处飞扬,这样会使实验失败。

2、在量热学测定中,还有那些情况可能需要用到雷诺温度校正方法?

答:为了准确测量温度,而且前后温度的变化不大时,可以用到雷诺温度校正方法。

3、用奈的燃烧热数据来计算萘的标准生产热?

答:δrhm=∑γiδchmi(反应热)-∑γiδchmi(生产热)

展开阅读全文

篇8:深圳大学物理化学实验报告双液系的气液平衡相图赖凯涛 张志诚 史炜 汤菲菲_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 3306 字

+ 加入清单

深圳大学物理化学实验报告--双液系的气----液平衡相图--赖凯涛 张志诚 史炜 汤菲菲

实验者:赖凯涛  张志诚  史炜 汤菲菲

深圳大学物理化学实验报告

实验者:赖凯涛 实验时间:5月15日

气温:23.0℃ 大气压:100900pa

实验六:双液系的气----液平衡相图

一:目的要求

绘制在p下环已烷-乙醇双液系的气----液平衡图,了解相图和相率的基本概念 掌握测定双组分液系的沸点的方法 掌握用折光率确定二元液体组成的方法 二:仪器 试剂

恒沸点仪

精密温度计

调压变压器

阿贝折光仪

超级恒温水浴

量筒、漏斗

滴管、大烧杯

无水乙醇

环己烷

含环己烷各为10、30、50、70、90、95%(重量百分数)的乙醇溶液。(用棕色试剂瓶盛装)含环己烷各为 0%、20%、40%、60%、80%、100%的标准乙醇溶液。 (用白滴瓶盛装)

三:数据分析

双液系汽-液平衡相图

实验者

张志诚

实验时间

2000/15/5

室温 ℃

23.0

大气压pa

100900

环己烷/乙醇标准溶液

浓度 %

折光率

0

1.3620

10

1.3630

20

1.3635

30

1.3650

40

1.3675

50

1.3730

60

1.3655

70

1.3940

80

1.4210

90

1.4258

100

1.4260

拟合方程式参数

a

6.0e-07

b

6.0e-04

c

1.3601

环己烷 %

0

10

30

50

70

90

95

100

沸点 ℃

77.40

73.20

67.20

64.30

63.70

64.90

79.40

79.80

气相折光率

1.3628

1.3722

1.3938

1.4010

1.4030

1.4195

1.4260

1.4261

液相折光率

1.3616

1.3639

1.3702

1.3819

1.4018

1.422

1.4265

1.4262

气相浓度

4

20

53

64

67

91

100

100

液相浓度

2

6

17

35

65

94

101

100

低恒沸溶液

沸点 ℃

组成 %

64.1

67

四:实验讨论。

在测定沸点时,溶液过热或出现分馏现象,将使绘出的相图图形发生什么变化? 答:当溶液出现过热或出现分馏现象,会使测沸点偏高,所以绘出的相图图形向上偏移。

压力和温度的测量都有随机误差,试导出h的误差传递表达式. 答:由h的定义式 h=u+pv 可得,

→ dh=du+pdv+vdp

→ dh=(?u/?t)v dt+(?u/?v)tdv+pdv+vdp

→ δvhm=(?u/?t)vδt+vδp

讨论本实验的主要误差来源。 答:本实验的主要来源:给双液体系加热而产生的液相的组成并不固定,而且加热的时间长短不十分固定,因此而使测定的折光率产生误差。另外,温度计水银球的位置并不固定,有时比较靠近电热丝,测得的温度稍微偏高。

top

深圳大学物理化学实验报告

实验者:张志诚 实验时间:5月15日

气温:23.0℃ 大气压:100900pa

实验六:双液系的气----液平衡相图

一:目的要求

绘制在p下环已烷-乙醇双液系的气----液平衡图,了解相图和相率的基本概念 掌握测定双组分液系的沸点的方法 掌握用折光率确定二元液体组成的方法 二:仪器 试剂

恒沸点仪

精密温度计

调压变压器

阿贝折光仪

超级恒温水浴

量筒、漏斗

滴管、大烧杯

无水乙醇

环己烷

含环己烷各为10、30、50、70、90、95%(重量百分数)的乙醇溶液。(用棕色试剂瓶盛装)含环己烷各为 0%、20%、40%、60%、80%、100%的标准乙醇溶液。 (用白滴瓶盛装)

双液系汽-液平衡相图

实验者

张志诚

实验时间

2000/15/5

室温 ℃

23.0

大气压pa

100900

环己烷/乙醇标准溶液

浓度 %

折光率

0

1.3620

10

1.3630

20

1.3635

30

1.3650

40

1.3675

50

1.3730

60

1.3655

70

1.3940

80

1.4210

90

1.4258

100

1.4260

拟合方程式参数

a

6.0e-07

b

6.0e-04

c

1.3601

环己烷 %

0

10

30

50

70

90

95

100

沸点 ℃

77.40

73.20

67.20

64.30

63.70

64.90

79.40

79.80

气相折光率

1.3628

1.3722

1.3938

1.4010

1.4030

1.4195

1.4260

1.4261

液相折光率

1.3616

1.3639

1.3702

1.3819

1.4018

1.422

1.4265

1.4262

气相浓度

4

20

53

64

67

91

100

100

液相浓度

2

6

17

35

65

94

101

100

低恒沸溶液

沸点 ℃

组成 %

64.1

67

实验讨论。

在测定沸点时,溶液过热或出现分馏现象,将使绘出的相图图形发生变化? 答:当溶液出现过热或出现分馏现象,会使测沸点偏高,所以绘出的相图图形向上偏移。

讨论本实验的主要误差来源。 答:本实验的主要来源是在于,给双液体系加热而产生的液相的组成并不固定,而是视加热的时间长短而定 因此而使测定的折光率产生误差。

三,被测体系的选择 本实验所选体系,沸点范围较为合适。由相图可知,该体系与乌拉尔定律比较存在严重偏差。作为有最小值得相图,该体系有一定的典型义意。但相图的液相较为平坦,再有限的学时内不可能将整个相图精确绘出。

四,沸点测定仪 仪器的设计必须方便与沸点和气液两相组成的测定。蒸汽冷凝部分的设计是关键之一。若收集冷凝液的凹形半球容积过大,在客观上即造成溶液得分馏;而过小则回因取太少而给测定带来一定困难。连接冷凝和圆底烧瓶之间的连接管过短或位置过低,沸腾的液体就有可能溅入小球内;相反,则易导致沸点较高的组分先被冷凝下来,这样一来,气相样品组成将有偏差。在华工实验中,可用罗斯平衡釜测的平衡、测得温度及气液相组成数据,效果较好。

五,组成测定 可用相对密度或其他方法测定,但折光率的测定快速简单,特别是需要样品少,但为了减少误差,通常重复测定三次。当样品的折光率随组分变化率较小,此法测量误差较大。

六,为什么工业上常生产95%酒精?只用精馏含水酒精的方法是否可能获得无水酒精?

答:因为种种原因在此条件下,蒸馏所得产物只能得95%的酒精。不可能只用精馏含水酒精的方法获得无水酒精,95%酒精还含有5%的水,它是一个沸点为的共沸物,在沸点时蒸出的仍是同样比例的组分,所以利用分馏法不能除去5%的水。工业上无水乙醇的制法是先在此基础上加入一定量的苯,再进行蒸馏。

top

深圳大学物理化学实验报告

实验者: 史炜 汤菲菲 实验时间: 2000/5/17

气温: 24.2 ℃ 大气压: 100.80 kpa

二组分固-液相图的绘制

目的要求 用热分析法测绘铅-锡二元金属相图,了解固-液相图的基本特点 学会热电偶的制作,标定和测温技术 掌握自动平衡记录仪的使用方法

仪器与试剂 自动平衡记录仪,热电偶,电炉,泥三角 ,坩锅钳,纯sn、含sn为20%、40%、60%、和80%的snpb合金以及纯pb(坩锅上的记号分别为1、2、3、4、5、6)

实验数据及其处理

双液系汽-液平衡相图

实验者

史炜

汤菲菲

实验时间

5月17日

室温 ℃

24.2

大气压pa

100800

环己烷/乙醇标准溶液

浓度 %

折光率

0

1.3619

10

1.3631

20

1.3637

30

1.3658

40

1.3680

50

1.3725

60

1.3850

70

1.3940

80

1.4192

90

1.4255

100

1.3620

拟合方程式参数

a

6.0e-07

b

6.0e-04

c

1.3601

环己烷 %

0

10

30

50

70

90

95

100

沸点 ℃

77.40

72.30

67.20

64.40

63.70

63.80

79.00

79.80

气相折光率

1.3623

1.3792

1.3900

1.3996

1.4035

1.4204

1.4224

1.4252

液相折光率

1.363

1.365

1.369

1.369

1.402

1.4241

1.4255

1.4252

气相浓度

4

31

48

62

68

92

95

99

液相浓度

5

8

15

15

66

97

99

99

4 实验讨论。

在测定沸点时,溶液过热或出现分馏现象,将使绘出的相图图形发生变化? 答:当溶液出现过热或出现分馏现象,会使测沸点偏高,所以绘出的相图图形向上偏移。

讨论本实验的主要误差来源。 答:本实验的主要来源是在于,给双液体系加热而产生的液相的组成并不固定,而是视加热的时间长短而定 因此而使测定的折光率产生误差。

展开阅读全文

篇9:深圳大学物理化学实验报告二组分固棗液相图的测绘张子科,刘开鑫_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 801 字

+ 加入清单

深圳大学物理化学实验报告--二组分固棗液相图的测绘--张子科刘开鑫

深圳大学物理化学实验报告 实验者: 张子科,刘开鑫 实验时间: 2000/4/3

气温: 21.6 ℃ 大气压: 101.1 kpa

实验七:二组分固棗液相图的测绘

一.目的要求

1)、分析法测绘铅-锡二元金属相图,了解固-液相图的基本特点

2)、学会热电偶的制作、标定和测温技术

3)、掌握自动平衡记录仪的使用方法

二.仪器 试剂

自动平衡记录仪

热电偶

电炉、泥三角 、坩锅钳

纯sn、含sn为20%、40%、60%、和80%的snpb合金以及纯pb(坩锅上的记号分别为1、2、3、4、5、6)

三.实验数据及处理

热电偶工作曲线

pb

sn

h2o

相变温度 ℃

323

232

100

平台高度 格

61.9

47.3

28.1

曲线斜率

6.6118

曲线截距

-84.269

步冷曲线

pb %

0

20

40

60

80

100

折点高度 格

47.4

43.8

41.2

47.5

56.5

62.3

平台高度 格

40.5

40.5

40.4

40

39.9

39.9

折点温度 ℃

229

205

188

230

289

328

平台温度 ℃

228

184

183

180

180

325

热电偶工作曲线

pb~sn相图

四.提问思考

1.步冷曲线各段的斜率以及水平段的长度与哪些因素有关?

答:对于斜率来说,与平衡记录仪的走纸速度和混合物中各物质的比例有关;对于水平长度来说,与控制冷却速度有关。

2.根据实验结果讨论各步冷曲线的降温速率控制是否得当。

答:在本次实验中,我们并没有采取降温控制,不过各平台明显,所以,由此看来,我们操作得当!

3.如果用差热分析法或差示扫描发来绘制相图,是否可行?

答:由于样品在吸热中相变较多,造成热容变化很大,与参比物相差甚远,造成基线发生漂移,因此,用以上两种方法不可行。

4.试从实验方法比较测绘气—液相图的异同点。

答:不同点:确定坐标的方式不同。

相同点:都是确定温度与浓度的关系,两者的数据都是热力学平衡下的结果。

展开阅读全文

篇10:大学生物实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,学生,全文共 7465 字

+ 加入清单

大学生物实验报告三篇

篇一:浙江大学生物传感器实验报告

实 验 报 告

生物传感器 与测试技术

课程名称 生物传感器与测试技术 姓 名 徐梦浙学 号 专 业 生物系统工程指导老师 王建平/叶尊忠

一 热电偶传感器实验

一、 实验目的:

了解热电偶测量温度的原理和调理电路,熟悉调理电路工作方式。

二、 实验内容:

本实验主要学习以下几方面的内容 1. 了解热电偶特性曲线;

2.观察采集到的热信号的实时变化情况。 3. 熟悉热电偶类传感器调理电路。

三、 实验仪器、设备和材料:

所需仪器

四、

myDAQ、myboard、nextsense01热电偶实验模块、万用表

注意事项

五、 在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯

曲,影响模块使用。 六、 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。 七、 更换模块或插槽前应关闭平台电源。 八、 开始实验前,认真检查热电偶的连接,避免连接错误而导致的输出电压超量程,否

则会损坏数据采集卡。 九、 本实验仪采用的电偶为K型热电偶和J型热电偶。

十、 实验原理:

热电偶是一种半导体感温元件,它是利用半导体的电阻值随温度变化而显著变化的特性实现测温。

热电偶传感器的工作原理

热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图50-1(a),即回路中存在电动势,该电动势被称为热电势。

图50-1(a) 图50-1(b)两种不同导体或半导体的组合被称为热电偶。

当回路断开时,在断开处a,b之间便有一电动势ET,其极性和量值与回路中的热电势一致,见图50-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当ET较小时,热电势ET与温度差(T-T0)成正比

十一、 实验步骤:

十二、 关闭平台电源(myboard),插上热电偶实验模块。开启平台电源,此时可以看到

模块左上角电源指示灯亮。

十三、 打开nextpad,运行热电偶实验应用程序

十四、 查看传感器介绍,了解热电偶的原理及温差与热电势之间的关系。

十五、 在特性曲线页面。选择不同型号的热电偶观察各型号热电偶的V-T,在测温曲线的

下方,手动模拟产生热电势的值,观察测温曲线。

十六、 在实验内容页面中了解实验的内容、操作方式和过程

十七、 在仿真页面任意改变运算放大器的输出电压值和运算放大倍数,记录E(T,T0)和

冷端温度仿真的输出值E(T0),将数据填写到热电偶温度手动测量表中,查表计算热电偶的电势所对应的温度值。 十八、 在测量页面

十九、 选择实际接入的电阻

二十、 在nextsense01中,用杜邦线将R2 R4链接到运算放大器上。

二十一、 调零。将A、B端用杜邦线短接,调节模块右侧下方的电位器,对放大器的输

出Vout进行调零。 二十二、 测量。选择K型或者J型热电偶其中一个,连接到A、B两端,在自动测量页

面,点击页面上的开始按钮进行数据的采集和记录,将热电偶放置到热水中记录温度的变化(温度变化范围至少30度)。 二十三、 在nextpad页面中,点击页面右上的数据保存按钮,选择保存的表格,进行数

据的保存。

二十四、 数据及结论(绘制数据点散图,建立回归方程,分析灵敏度和线性误差)

冷场温度 热电偶输出电势(uV) 20.64 3543.21 20.65 3500.6 20.65 3731.66 20.65 3730.34 20.64 3797.56

测量点温度

87.59 86.81 91.08 91.06 92.3

温度差 66.95 66.16 70.43 70.41 71.66

20.64 20.65 20.65 20.65 20.64 20.65 20.65 20.66 20.66 20.65 20.66 20.65 20.66 20.64 20.66 3815.1 3561.15 3491.3 3509.37 3463.48 3472.74 3514.91 3535.65 3585.15 3601.62 3544.6 3443.76 3421.89 3410.39 3461.66 92.62 87.93 86.63 86.97 86.11 86.29 87.07 87.46 88.38 88.68 87.63 85.76 85.36 85.13 86.1

71.98 67.28 65.98 66.32 65.47 65.64 66.42 66.8 67.72 68.03 66.97 65.11 64.7 64.49 65.44

结论:

实验表明,当ET较小时,热电势ET与温度差(T-T0)成正比,被测传感器的比例系数为54.020。根据半导体的电阻值随温度变化而显著且有规律变化的这一特性,可以实现测温功能。

篇二:大学生物实验论文要领

白色背景

题目:用短语,不用句子:……的研究,不要用学科题目作标题;英文:A study of…… 通讯作者:BOSS,支持者

摘要:目的、方法、结果、结论。不宜举例,不用引文。英文摘要调整一下,符合英文顺序。关键词:分子式、化学式不作为关键词,要写全名。常规技术不做关键词如离心,英文关键词用,隔开

前言:常见的引言包括以下内容:

1 提出课题的现实情况和背景;

2说明课题的性质、范畴及其重要性,突出研究的目的或者需要解决的问题;

3 前人研究成果及其评价;

4 达到研究目的的研究方法和实(试)验设备;

5 研究工作的新发现。

研究背景理论依据(是什么,研究进展,实验原理包括方法原理、实验对象原理即为什么选这两个对象,有无关联,判断原理的依据)、研究目的(要解决什么问题)、研究方法(怎样研究)400-500字左右,文献综述包括在前言里。

写前人……本研究……希望得到……的结果

材料:写主要的,例如树脂,Tris,其他就写国产分析纯,如NaCl,烧杯、试管不写

方法:众所周知的方法不写,如离心。写出方法名字,注明参考文献,重点写改进方法。例如:提取效果为……的电泳进行检测

结果:比例尺、图标、放大倍数;不进行评论评价分析讨论,实验结果不要原始浓度,电泳的各个泳道是什么一定要写出来。洗脱图自己重新做一个,标注单位。柱层析的峰要写标号,注明是什么蛋白。

结论:实验表面结果,反映了什么现象。相同因素之间,不同因素之间。方法怎么样。 讨论:得到这样结果的可能原因,原因大小程度。建议、改进可放分析讨论。1讨论为什么会出现这样的结果出现意味了什么?用理论解释。2比较与前人异同(异:解释差异;同:更加证明)3研究有什么新发现,可能的原因4实验的不足

其他:同一结果图表不共存,如果图不能直接说明可以附上表,图上无多余的线,违反总体趋势的个别点可以去掉。折线图横轴按实验进行顺序编写。小数点位数保持一致。 (适用于细胞生物学及植物生理学)

微生物及生物化学有待补充。。。

致谢:协助、资金支持,200字

生化海报:IgG与别人标准进行比较,pro标准曲线不过0点,标准pro只有280nm,几个样都要算。

图名称包括:方法、目的、对象

电泳:上样顺序、其他分子量、marker分子量、分析趋势(迁移率一般达不到0.999) 紫外:峰1,峰2,那个是我们的

写分析不写说明,与其他步骤联系起来,层析与电泳联系起来说明

分析:最后有结论,浓度、回收率提取出来,图有序列关系,按实验进行顺序

海报一般是竖的,存PDF或图片

分析讨论对结果讨论,对别人展示好的一面,不是注意事项

要有说明,表名称,要有整体联系性。

篇三:大连理工大学 生化实验报告——模版(新)

小牛肠碱性磷酸酶的提取及酶活测定、

考马斯亮蓝法测定蛋白质含量、

SDS-PAGE电泳法测定蛋

摘要 本实验通过从小牛肠中提取小牛肠碱性磷酸酶,利用考马斯亮蓝法测定蛋白质含量,并测定酶的活性。最后通过SDS-聚丙烯凝胶电泳测定蛋白质相对分子量.

关键词 小牛肠碱性磷酸酶提取 酶活测定 考马斯亮蓝法 SDS-PAGE电泳法

本实验分为三部分。先通过对牛小肠内膜的刮取,离心,沉淀析出等方法,提取牛小肠碱性磷酸酶;然后用考马斯亮蓝G-250与碱性磷酸酶结合,利用紫外分光光度计在一定波长下测定结合物的吸收波长,根据其吸光度与蛋白质结合物的含量成正比的关系测定蛋白质含量,进而测定出蛋白质的比活力;最后,通过SDS-聚丙烯凝胶电泳测定蛋白质相对分子量,分析所获得的电泳结果来推算出被测蛋白质分子量的近似值。

1 实验部分

1.1 试剂与仪器

1.1.1小牛肠碱性磷酸酶的提纯及酶活测定

1、 试剂

(1)正丁醇、丙酮(置-20℃冰箱保存)

(2)1mol/L醋酸(HAC)、1mol/LNaOH、硫酸铵

(3)平衡缓冲液:0.01mol/LTris-HCL,PH 8.0,(含1.0×10-3mol/LMgCl2和1.0×10-5mol/LZnCl2)。

(4)底物缓冲液:1mol/L二乙醇胺-盐酸缓冲液(PH9.8,含0.5×10-3mol/LMgCl2)。

(5)酶的底物溶液:用底物缓冲液配制15×10-3mol/L对硝基苯磷酸二钠溶液。(已加入底物缓冲液中)

2、仪器

匀浆机、冷冻离心机、恒温水浴、紫外可见分光光度计、离心管、剪刀、载玻片、不锈钢盘、搪瓷盘、滤布、漏斗、分液漏斗、量筒、烧杯、移液枪、比色皿

1.1.2考马斯亮蓝法测定蛋白质含量

1、试剂

考马斯亮蓝、实验小牛肠碱性磷酸酶的提纯及酶活测定所得酶液、生理盐水

2、仪器

分光光度计、分析天平、玻璃比色杯、试管及试管架、移液枪

1.1.3 SDS-PAGE电泳法测定蛋白质相对分子质量

1、试剂

1)30%丙烯酰胺(acrylamide,Acr)置棕色瓶。

2)分离胶缓冲液:1.5mol/LTris-HCL缓冲液,pH8.8,已加入10%SDS。

3)浓缩胶缓冲液:0.5mol/LTris-HCL缓冲液,pH6.8,已加入10%SDS。

4)10%过硫酸铵(AP)(小离心管装,提供驱动丙烯酰胺和双丙烯酰胺的聚合所必须的自由基,须新鲜配置。)

5)TEMED(四甲基乙二胺)(小离心管装T,通过催化过硫酸铵形成自由基而加速丙烯酰胺和双丙烯酰胺的聚合)

6)上扬缓冲液(小离心管装S):称100mgSDS、2mg溴酚蓝、2g甘油,加0.1mL巯基乙醇、2mL-。-5mol/LpH8.0Tris-HCL,加超纯水定容至10mL。

7)染色液:配置含0.1%考马斯亮蓝R250,40%(体积分数)甲醇和10%(体积分数)冰醋酸的染色液500mL,过滤后备用。

8)脱色液:500mL10%(体积分数)甲醇和10%(体积分数)冰醋酸的脱色液1000mL。

9)电泳缓冲液(含0.1%SDS,0.05mol/LTris,0.384mol/L甘氨酸pH8.3).

2、仪器

电泳仪、电泳槽、制胶板、摇床、移液枪

1.2 实验过程

1.2.1小牛肠碱性磷酸酶的提纯及酶活测定

1、酶的分离提纯

1)取新鲜小牛肠,用剪刀纵向剖开,用载玻片刮去小肠内粘膜,放到盘子一角。

2)统一将小肠黏膜液集中倒入匀浆机中,加1.5倍体积冰冷蒸馏水,高速匀浆15s,重复20次。

3)缓慢加入(总体积)1倍体积的冰冷正丁醇,高速匀浆15s,重复20次。

每组领取60mL的匀浆液,放入离心管中(离心管装液量不能超过70%),用另一离心管用水配平(切记离心前连同离心管盖子一起用天平配平),在4℃条件下,10000rpm,离心15min(离心管对称放置)。

4)用滤布过滤去除杂质(滤饼),倒入分液漏斗中,静止分层(勿摇),去下层水相,用1mol/LHAc调pH到

4.9。4℃,10000rpm,离心10min。

5)得到上清26.5mL,放入离心管中,用1mol/LNaOH调pH至6.5,称取质量为溶液体积5%的硫酸铵1.33g(5g硫酸铵/100mL溶液),加到离心管中溶解;再加0.47倍体积(12.45mL)冰冷丙酮,混匀,4℃(冰箱中)静置30min以上。4℃,10000rpm,离心10min。

6)上清液36.5mL中加入1.07倍体积(39.06mL)冰冷丙酮,4℃静置30min以上。4℃,10000rpm,离心10min。

7)取沉淀溶于2mL平衡缓冲液至全部溶解。置冰箱保存待用。

2、底物处理

底物(对硝基苯磷酸二钠已溶于平衡缓冲液中)37℃水浴5min(注意:根据分光光度计使用情况,要检测前加热)

3、酶活检测

1)将酶稀释10倍(配制取10μL,溶于90μL平衡缓冲液中得到)

2)紫外分光光度计检测条件:405nm波长,测定时间60s,取值2s,记录范围0.0-1.5。

3)取2个2mL比色皿(0.5cm光程),加入1.5mL上述(2)加热的底物缓冲液,校对归零。

4)将稀释10倍的酶液10μL加到其中1个比色皿中(仪器外侧),用手堵住皿口。快速上下倒2次,放回分光光度计中,测定没动力学曲线。

1.2.2考马斯亮蓝法测定蛋白质含量

1、玻璃试管中加入5mL考马斯亮蓝。

2、在1.5mL离心管中,取上一实验得到的酶液分别稀释50、100、200倍。

3、各取100μL加入到5mL考马斯亮蓝试管中,混匀,反应5min以上,另各取100μL生理盐水分别加入到5mL考马斯亮蓝试管中。(观察蓝色,以浅蓝色为好)

4、紫外分光光度计检测条件:595nm波长

5、取2个比色皿(1cm光程)加入考马斯亮蓝(比色皿的2/3),分光光度计中校对归零。

6、将样品放入外侧比色皿中,读吸光值(得到医治蛋白浓度标准曲线范围内的度数即可,0.1-0.5之间)。

7、根据蛋白浓度标准曲线,计算酶蛋白浓度(乘以相应稀释倍数即得原始酶液蛋白浓度,注意单位)

1.2.3 SDS-PAGE电泳法测定蛋白质相对分子质量

1、装板:将垂直板型电泳的玻璃片洗净、晾干;放好胶条(棱朝上,平铺),用夹子夹好玻璃板,上面插上梳子(注意下面2个夹子要水平,两侧夹子离梳子底部1-0.5cm,表明分离胶加的位置),垂直放置在水平台面上

备用。

2、制备分离胶:在小烧杯中按下表配置所需浓度的分离胶。

分离胶制备(浓度10%,制备量10mL)

试剂

H2O 30%丙烯酰胺

1.5mol/LTris-HCL缓冲液pH8.8

10%过硫酸铵

TEMED 用量 4.1mL 3.4mL 2.4mL 100μL 10μL

注意:最后加入TEMED,应快速摇匀分离胶,向玻璃板间隙,沿着长玻璃板的内侧缓慢注胶,然后再用移液枪慢慢移动注入乙醇200μL,以防止氧气进入胶内。15min后,分离胶和乙醇之间出现分界线,表明分离胶凝固,倒出乙醇。

3、制备凝缩胶:在小烧杯中按下表配置所需浓度的浓缩胶。

浓缩胶制备(浓度5%,制备量6mL)

试剂

H2O 30%丙烯酰胺

0.5mol/LTris-HCL缓冲液pH6.8

10%过硫酸铵

TEMED

进入气泡,放置约20min,待浓缩胶凝固。

4、蛋白质样品处理(小离心管装B):在1.5mL离心管中按1:1体积比例,加样品和上样缓冲液(200μL:200μL)。100℃加热3min使蛋白变性。

5、浓缩胶完全聚合后,去掉夹子和胶条,拔去梳子(注意不要产生气魄,即电泳泳道),将凝胶玻璃板固定于电泳装置内槽上,加入电泳缓冲液(内、外槽,查漏),缓冲液高过玻璃板凹面。

6、用移液枪依次在泳道加样(5个20μL,4个40μL)。(本组将marker置于第六泳道)

7、电泳:连接正、负极,打开电源(稳压130V或电流50-60mA),开始时,电流控制在40A,样品进入分离胶后,缓慢升高电压至140V或电流50-60mA保持电压或电流强度不变。带溴酚兰指示剂迁移至下沿处,停止电泳,需1.5h左右。

8、剥胶染色:电泳结束后,取出凝胶玻璃板,用水冲洗,用金属片从玻璃两侧轻轻撬开。使板内进入空气,同时用水冲洗,取出凝胶板,将剥离下来的凝胶用水漂洗,转入染色缸中。加染色液,至摇床染色15min。

9、脱色:染色完毕,回收染色液,用水漂洗,加入脱色液,置摇床脱色,30min换1次脱色液,脱色至背景清晰。

10、观察测定蛋白的迁移率及条带,对照标准样品,分析蛋白样品的分子量及纯度。

11、拍照电泳结果,用于完成实验报告。

用量 3.4mL 1.0mL 1.5mL 60μL 8μL 注意:一旦加入TEMED,应快速摇匀浓缩胶,在已凝固的分离胶层上加浓缩胶,立即将梳子插入胶液顶部,避免

2 结果与讨论

2.1 小牛肠碱性磷酸酶的酶活测定

碱性磷酸酶酶活定义:在37℃条件下,以每分钟催化水解1μmol底物的酶量为一个酶活力单位。

碱性磷酸酶作用于缓冲液中的对硝基苯磷酸二钠,使之水稀释放出对硝基苯酚,后者在405nm光波长下有最大吸收,通过测定吸光值的变化率,可测知酚的生成量,从而计算出酶的活性单位。

酶活力的计算:

比活力(U/mg)= ΔA/min×VR×DE405×VE×C×L

1、由实验小牛肠碱性磷酸酶的提纯及酶活测定中实验步骤可知,

反应液的体积VR= 1.5mL

稀释倍数 D= 10

405nm波长下对硝基苯酚的摩尔消光系数E405= 18.3L/(mol×cm)

所加酶液体积VE= 0.01mL

比色皿光程 L= 0.5cm

2、405nm波长下的吸光值的变化率通过分光光度计测量得到酶动力学曲线(图1)可以得到,ΔA/min=0.6179 (根据图片,自己估算斜率,注意单位。)

/看后删除

说明: 图片均要用自己的。

半栏图片宽为8.15厘米,高为4.4~5.5厘米之间,对于特别大的图可加大宽度。通栏图片宽度为16.3厘米,高为4.4~5.5厘米之间,图说为字号为小5号黑体字。

/

表注用小5号字,表字用6号字。

图1.酶动力学曲线

3、蛋白质原始浓度C可由实验考马斯亮蓝法测定蛋白质含量获得

考马斯亮蓝G-250测定蛋白质含量属于燃料结合法的一种。在一定蛋白浓度范围内(0.01-1.0mg/mL),蛋白质-色素结合物在

595nm

波长下的光吸收与蛋白质含量成正比,故可用于蛋白质的定量测量。

通过实验,利用紫外分光光堆积测定稀释50倍的酶液读得吸光值为0.1478A,利用考马斯亮蓝常量法测蛋白质标准曲线(图2)及其标准曲线拟合解析式y=0.697x-0.007得稀释后的标准蛋白浓度为0.2221mg/mL。

故蛋白质原始浓度C=50×0.2221mg/mL=11.105mg/mL

展开阅读全文

篇11:大学物理实验课程设计实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,设计,全文共 1714 字

+ 加入清单

大学物理实验课程设计实验报告

北方民族大学

大学物理实验(设计性实验)

实验报告

指导老师:王建明

姓    名:张国生

学    号:XX0233

学    院:信息与计算科学学院

班    级:05信计2班

重力加速度的测定

一、实验任务

精确测定银川地区的重力加速度

二、实验要求

测量结果的相对不确定度不超过5%

三、物理模型的建立及比较

初步确定有以下六种模型方案:

方法一、用打点计时器测量

所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.

利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

方法二、用滴水法测重力加速度

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面

重力加速度的计算公式推导如下:

取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:

ncosα-mg=0 (1)

nsinα=mω2x (2)

两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

方法四、光电控制计时法

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法五、用圆锥摆测量

所用仪器为:米尺、秒表、单摆.

使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t

摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2.

将所测的n、t、h代入即可求得g值.

方法六、单摆法测量重力加速度

在摆角很小时,摆动周期为:

通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

四、采用模型六利用单摆法测量重力加速度

摘要:

重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。

伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。

应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。

实验器材:

单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线

实验原理:

单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。

f =p sinθ

f

θ

共2页,当前第1页12

展开阅读全文

篇12:最新大学物理实验课程设计实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,设计,全文共 2456 字

+ 加入清单

最新大学物理实验课程设计实验报告

大学物理实验(设计性实验)

实验报告

指导老师:王建明

姓 名:张国生

学 号:XX0233

学 院:信息与计算科学学院

班 级:05信计2班

重力加速度的测定

一、实验任务

精确测定银川地区的重力加速度

二、实验要求

测量结果的相对不确定度不超过5%

三、物理模型的建立及比较

初步确定有以下六种模型方案:

方法一、用打点计时器测量

所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.

利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

方法二、用滴水法测重力加速度

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面

重力加速度的计算公式推导如下:

取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:

ncosα-mg=0 (1)

nsinα=mω2x (2)

两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

方法四、光电控制计时法

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法五、用圆锥摆测量

所用仪器为:米尺、秒表、单摆.

使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t

摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2.

将所测的n、t、h代入即可求得g值.

方法六、单摆法测量重力加速度

在摆角很小时,摆动周期为:

通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

四、采用模型六利用单摆法测量重力加速度

摘要:

重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。

伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。

应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。

实验器材:

单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线

实验原理:

单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。

f =p sinθ

f

θ

t=p cosθ

p = mg

l

图2-1 单摆原理图

摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。当摆角很小时(θ

sinθ=

f=psinθ=-mg =-m x (2-1)

由f=ma,可知a=- x

式中负号表示f与位移x方向相反。

单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= =-ω2x

可得ω=

于是得单摆运动周期为:

t=2π/ω=2π (2-2)

t2= l (2-3)

或 g=4π2 (2-4)

利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。

由式(2-3)可知,t2和l之间具有线性关系, 为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。

试验条件及误差分析:

上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:

1. 单摆的摆动周期与摆角的关系,可通过测量θ

实际上,单摆的周期t随摆角θ增加而增加。根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:

t=t0[1+( )2sin2 +( )2sin2 +……]

式中t0为θ接近于0o时的周期,即t0=2π

2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

3.如果考虑空气的浮力,则周期应为:

式中t0是同一单摆在真空中的摆动周期,ρ空气是空气的密度,ρ摆锥 是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。

4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。

展开阅读全文

篇13:大学物理实验报告范例_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 2943 字

+ 加入清单

大学物理实验报告范例

摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性

1、引言

热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:

Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件

常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件

常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越校应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理

【实验装置】

FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】

根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为

(1—1)

式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为

(1—2)

式中 为两电极间距离, 为热敏电阻的横截面, 。

对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有

(1—3)

上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,

以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。

热敏电阻的电阻温度系数 下式给出

(1—4)

从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。

热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。

当负载电阻 → ,即电桥输出处于开

路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。

若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:

(1—5)

在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则

(1—6)

式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。

3、热敏电阻的电阻温度特性研究

根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。

根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。

表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性

温度℃ 25 30 35 40 45 50 55 60 65

电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748

表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据

i 9 10

温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4

热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4

0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4

0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9

4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.692.9 2507.6 2345.1

根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。

4、实验结果误差

通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:

表三 实验结果比较

温度℃ 25 30 35 40 45 50 55 60 65

参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748

测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823

相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00

从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。

5、内热效应的影响

在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。

6、实验小结

通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。

参考文献:

[1] 竺江峰,芦立娟,鲁晓东。 大学物理实验[M]

[2] 杨述武,杨介信,陈国英。普通物理实验(二、电磁学部分)[M] 北京:高等教育出版社

[3] 《大学物理实验》编写组。 大学物理实验[M] 厦门:厦门大学出版社

[4] 陆申龙,曹正东。 热敏电阻的电阻温度特性实验教与学[J]

展开阅读全文

篇14:大学物理实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 3000 字

+ 加入清单

大学物理实验报告

摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性

1、引言

热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:

Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件

常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件

常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理

【实验装置】

FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】

根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为

(1—1)

式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为

(1—2)

式中 为两电极间距离, 为热敏电阻的横截面, 。

对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有

(1—3)

上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,

以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。

热敏电阻的电阻温度系数 下式给出

(1—4)

从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。

热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。

·物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板

当负载电阻 → ,即电桥输出处于开

路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。

若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:

(1—5)

在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则

(1—6)

式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。

3、热敏电阻的电阻温度特性研究

根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。

根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。

表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性

温度℃ 25 30 35 40 45 50 55 60 65

电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748

表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据

i 1 2 3 4 5 6 7 8 9 10

温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4

热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4

0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4

0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9

4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1

根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。

4、实验结果误差

通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:

表三 实验结果比较

温度℃ 25 30 35 40 45 50 55 60 65

参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748

测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823

相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00

从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。

5、内热效应的影响

在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。

6、实验小结

通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。

参考文献:

[1] 竺江峰,芦立娟,鲁晓东。 大学物理实验[M]

[2] 杨述武,杨介信,陈国英。普通物理实验(二、电磁学部分)[M] 北京:高等教育出版社

[3] 《大学物理实验》编写组。 大学物理实验[M] 厦门:厦门大学出版社

[4] 陆申龙,曹正东。 热敏电阻的电阻温度特性实验教与学[J]

展开阅读全文

篇15:大学物理演示实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 1495 字

+ 加入清单

大学物理演示实验报告

院系名称: 纺织与材料学院

专业班级:轻化工程11级03班

姓 名:梁优

学 号:

鱼洗

实验描述:

鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

实验原理:

鱼洗的原理应该是同时应用了波的叠加和共振。摩擦的双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。这与实验中观察到的现象相同。按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。通过摩擦输入的能量才会激起水花。

令人不解的是,事实上鱼洗是否能产生水花与双手的摩擦频率并没有关系。在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。(正如在锣面上敲一下。)

为什么湿润的双手更容易引起鱼洗的振动呢?从实践的角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。

离心力演示仪

实验描述:

离心力演示仪是一个圆柱形仪器,中间有一个细柱,细柱穿过一段闭合的硬塑料带上的两个正对小孔。塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。当旋转速度增大时,可以看到塑料带的自由端延细柱向下运动,整个塑料带变成旋转的椭圆形状。

实验原理:

离心力是一个惯性力,实际上是并不存在的。绕旋转中心转动的物体有脱离中心延半径方向向外运动的趋势,产生这种趋势的力即称为离心力。当启动仪器时,塑料带各部分均作水平方向的圆周运动,所需要的向心力由临近部分的塑料小段的拉力的径向分力提供。每一个塑料小段均收到来自前后两个塑料小段的拉力。由于塑料带下端是固定的,因此在塑料带的下半部分,每个塑料小段的受力均可分解成提供向心力的径向分力和竖直向下的分力。对其上半圆部分也有类似的结果,我个人认为,塑料带一段固定是这个仪器最重要的条件,这样塑料带的下半部分的受力结果才能确定,进而上半部分每个塑料小段所受的两个拉力的关系才能确定。在竖直向下的分力作用下,塑料带被压扁成为旋转的椭圆。

辉光球

实验描述:

辉光球是圆形球体,实验室中还有一个为圆盘形状。工作时会发出动感绚烂的五彩辉光,有一种魔幻效果。仔细观察辉光球,可以看到其中的气体,蓝色的一个辉光球尤为明显。当将手指放上去时,手指接触球体的部分会被辉光点亮,同时球中会有一缕气体与碰触的位置连接,十分美丽。另外观察得知,如果用笔、尺子等其他物体接触辉光球,也会出现上述现象,但强度与用手指接触相比小得多。

实验原理:

辉光球的另一个名称是电离子魔幻球,顾名思义,它的工作原理与电离有关。经查资料得知,稀薄的稀有气体在高频的强电场作用下会发生电离作用。而从生活中的霓虹灯得知,稀有气体如果电离,则会发光,具体的颜色与气体种类有关。根据查到的资料了解,在我们的实验室的辉光球中,发出红绿蓝三色辉光的圆盘可能充有He,

Ne

和Xe,蓝色的辉光球中可能充有Ar。在人手触摸辉光球时,由于人体和大地相连,人触摸的位置的电势与大地的电势相等,整个辉光球的电场分布不再均匀,手指碰触的地方有更低的电势,所以会更加明亮,同时,辉光球中央的电极与人手之间的电势差会更大,因而形成的辉光弧线会一直跟随人的手指。

展开阅读全文

篇16:大学物理《弦振动》实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 2801 字

+ 加入清单

大学物理弦振动实验报告

(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)

一.实验目的

1.观察弦上形成的驻波

2.学习用双踪示波器观察弦振动的波形

3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系

二.实验仪器

XY弦音计、双踪示波器、水平尺

三 实验原理

当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。 理论和实验证明,波在弦上传播的速度可由下式表示:

=

ρ

1

------------------------------------------------------- ①

另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:

v=λγ-------------------------------------------------------- ②

将②代入①中得 γ

=λ1

-------------------------------------------------------③ ρ1

又有L=n*λ/2 或λ=2*L/n代入③得 γ

n=2L

------------------------------------------------------ ④ ρ1

四 实验内容和步骤

1.研究γ和n的关系

①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….) ④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

2.研究γ和T的关系 保持L=60.00cm,ρ

1保持不变,将1kg的砝码依次挂在第1、2、3、4、5槽内,测出n=1

时的各共振频率。计算lg r 和lgT,以lg2为纵轴,lgT为横轴作图,由此导出r和T的关系。

3.验证驻波公式

根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式。

1、弦长l1、波腹数n的

五 数据记录及处理

1.实验内容1-2 数据 T=1mg ρ1=5.972 kg/m

数据处理:

由matlab求得平均数以及标准差 1.平均数 x1=117.5600 2.标准差 σx=63.8474

最小二乘法拟合结果: Linear model Poly1:f(x) = p1 + p2

Coefficients (with 95% confidence bounds): p1 = 40.38 (39.97, 40.79) p2 = -3.58 (-4.953, -2.207)

Goodness of fit:SSE: 0.508R-square: 1

Adjusted R-square: 1RMSE: 0.4115

此结果中R-square: 1 Adjusted R-square: 1说明,此次数据没有异常点,并且这次实验数据n与γ关系非常接近线性关系,并可以得出结论:n与γ呈正比。

2.实验内容 3.4数据

1.平均数 x1= 62.20xx 2.标准差 σx=308.2850

最小二乘法拟合结果: Linear model Poly1:f(x) = p1 + p2

Coefficients (with 95% confidence bounds): p1 =0.4902 (0.4467, 0.5336) p2 = 1.574 (1.553, 1.595) Goodness of fit:SSE: 0.0001705R-square: 0.9977

Adjusted R-square: 0.9969RMSE: 0.007539

由分析可知,此次数据中并没有异常点,并且进行线性拟合后R-square: 0.9977 Adjusted R-square: 0.9969,因为都极其接近1,所以说此次拟合进行的非常成功,由此我们可以得出相应的结论:lgT与lgγ是线性关系。

六.结论

验证了弦振动的共振频率与张力是线性关系

也验证了弦振动的共振频率与波腹数是线性关系。

七.误差分析

在γ和n关系的实验中,判断是否接近共振时,会有一些误差,而且因为有外界风力等不可避免因素,所以可能会有较小误差。

在γ与T实验中,由于摩擦力,弦不是处于完全水平等可能产生较小的误差。

附录(Matlab代码)

%%实验1 %一

A=[1 37.2 2 76.9 3 117.1 4 158.1 5 198.5];

p1=mean(A(:,2)); %平均数 q1=sqrt(var(A(:,2))); %标准差

figure

plot(A(:,1),A(:,2),o) hold on lsline

xlabel(n 波腹数);

ylabel(γ(Hz) 频率);title(γ和n的关系);

[k b]=polyfit(A(:,1),A(:,2),1);%拟合直线

%二

% T(kg) LgT(kg) γ(Hz) Lgγ(Hz) B=[1 0.00 37.2 1.57 2 0.3 53.6 1.73 3 0.48 65.0 1.81 4 0.60 72.5 1.86 5 0.70 82.7 1.92];

x=B(:,1); y=B(:,3);

figure

loglog(x,y) %x,y 都为对数坐标 plot(B(:,2),B(:,4),o) hold on lsline

xlabel(T 拉力);

ylabel(γ(Hz) 频率); title(γ和T的关系)

展开阅读全文

篇17:大学物理实验报告样本范文_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 794 字

+ 加入清单

大学物理实验报告样本范文

实验名称:二组分金属相图(注意::兰字部分即为预习报告,不用另外抄写一份!)

班级:102班 姓名:王亮 学号:20xx 实验组号:20xx年3月14日 指导教师:

一、 实验目的:

1、用热分析法(步冷曲线法)测绘Zn-Sn二组分金属相图;

2、掌握热电偶测量温度的基本原理。

二、 实验原理:概述、及关键点

1、简单的二组分金属相图主要有几种?

2、什么是热分析法?步冷曲线的线、点、平台各代表什么含义?

3、采用热分析法绘制相图的关键是什么?

4、热电偶测量温度的基本原理?

三、 实验装置图(注明图名和图标)

四、 实验关键步骤:

不用整段抄写,列出关键操作要点,推荐用流程图表示。

五、 实验原始数据记录表格(根据具体实验内容,合理设计)

组成为w(Zn)=0.7的样品的温度-时间记录表

时间 τ/min 温度 t/oC

开始测量 0 380

第一转折点

第二平台点

结束测量

六、 数据处理(要求写出最少一组数据的详细处理过程)

七、思考题

八、对本实验的体会、意见或建议(若没有,可以不写) (完)

1.学生姓名、学号、实验组号及组内编号; 2.实验题目: 3.目的要求:(一句话简单概括)

4.仪器用具: 仪器名称及主要规格(包括量程、分度值、精度等)、用具名称。 5.实验原理:简单但要抓住要点,要写出试验原理所对应的公式表达式、公式中各物理参量的名称和物理意义、公式成立的条件等。画出简单原理图等。 6.实验内容; 7.数据表格:画出数据表格(写明物理量和单位); 8.数据处理及结果(结论):按实验要求处理数据。 9.作业题:认真完成实验教师要求的思考题。 10.讨论:对实验中存在的问题、数据结果、误差分析等进行总结,对进一步的想法和建议等进行讨论。实验报告要求 1.认真完成实验报告,报告要用中国科学技术大学实验报告纸,作图要用坐标纸。 2.报告中的线路图、光路图、表格必须用直尺画。

展开阅读全文

篇18:大学物理重力加速度的测定实验报告范文_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 2439 字

+ 加入清单

大学物理重力加速度测定实验报告范文

一、实验任务

精确测定银川地区的重力加速度

二、实验要求

测量结果的相对不确定度不超过5%

三、物理模型的建立及比较

初步确定有以下六种模型方案:

方法一、用打点计时器测量

所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.

利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

方法二、用滴水法测重力加速度

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面

重力加速度的计算公式推导如下:

取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:

ncosα-mg=0 (1)

nsinα=mω2x (2)

两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

方法四、光电控制计时法

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法五、用圆锥摆测量

所用仪器为:米尺、秒表、单摆.

使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t

摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2.

将所测的n、t、h代入即可求得g值.

方法六、单摆法测量重力加速度

在摆角很小时,摆动周期为:

通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

四、采用模型六利用单摆法测量重力加速度

摘要:

重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。

伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。

应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。

实验器材:

单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线

实验原理:

单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。

f =p sinθ

t=p cosθ

p = mg

l

图2-1 单摆原理图

摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。当摆角很小时(θ

sinθ=

f=psinθ=-mg =-m x (2-1)

由f=ma,可知a=- x

式中负号表示f与位移x方向相反。

单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= =-ω2x

可得ω=

于是得单摆运动周期为:

t=2π/ω=2π (2-2)

t2= l (2-3)

或 g=4π2 (2-4)

利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。

由式(2-3)可知,t2和l之间具有线性关系, 为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。

试验条件及误差分析:

上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:

1. 单摆的摆动周期与摆角的关系,可通过测量θ

实际上,单摆的周期t随摆角θ增加而增加。根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:

t=t0[1+( )2sin2 +( )2sin2 +……]

式中t0为θ接近于0o时的周期,即t0=2π

2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

3.如果考虑空气的浮力,则周期应为:

式中t0是同一单摆在真空中的摆动周期,ρ空气是空气的密度,ρ摆锥 是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。

4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。

上述四种因素带来的误差都是系统误差,均来自理论公式所要求的条件在实验中未能很好地满足,因此属于理论方法误差。

展开阅读全文

篇19:大学物理实验报告优秀模板_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 2460 字

+ 加入清单

大学物理实验报告优秀模板

大学物理实验报告模板

实验报告

一.预习报告

1.简要原理

2.注意事项

二.实验目的

三.实验器材

四.实验原理

五.实验内容、步骤

六.实验数据记录与处理

七.实验结果分析以及实验心得

八.原始数据记录栏(最后一页)

把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。

实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。

实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。

实验报告内容与格式

(一) 实验名称

要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证”;分析。

(二) 所属课程名称

(三) 学生姓名、学号、及合作者

(四) 实验日期和地点(年、月、日)

(五) 实验目的

目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。

(六) 实验内容

这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程.

(七) 实验环境和器材

实验用的软硬件环境(配置和器材)。

(八) 实验步骤

只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图(实验装置的结构示意图),再配以相应的文字说明,这样既可以节省许多文字说明,又能使实验报告简明扼要,清楚明白。

(九) 实验结果

实验现象的描述,实验数据的处理等。原始资料应附在本次实验主要操作者的实验报告上,同组的合作者要复制原始资料。

对于实验结果的表述,一般有三种方法:

1. 文字叙述: 根据实验目的将原始资料系统化、条理化,用准确的专业术语客观地描述实验现象和结果,要有时间顺序以及各项指标在时间上的关系。

2. 图表: 用表格或坐标图的方式使实验结果突出、清晰,便于相互比较,尤其适合于分组较多,且各组观察指标一致的实验,使组间异同一目了然。每一图表应有表目和计量单位,应说明一定的中心问题。

3. 曲线图 应用记录仪器描记出的曲线图,这些指标的变化趋势形象生动、直观明了。

在实验报告中,可任选其中一种或几种方法并用,以获得最佳效果。

(十) 讨论

根据相关的理论知识对所得到的实验结果进行解释和分析。如果所得到的实验结果和预期的结果一致,那么它可以验证什么理论?实验结果有什么意义?说明了什么问题?这些是实验报告应该讨论的。但是,不能用已知的理论或生活经验硬套在实验结果上;更不能由于所得到的实验结果与预期的结果或理论不符而随意取舍甚至修改实验结果,这时应该分析其异常的可能原因。如果本次实验失败了,应找出失败的原因及以后实验应注意的事项。不要简单地复述课本上的理论而缺乏自己主动思考的内容。

另外,也可以写一些本次实验的心得以及提出一些问题或建议等。(十一) 结论

结论不是具体实验结果的再次罗列,也不是对今后研究的展望,而是针对这一实验所能验证的概念、原则或理论的简明总结,是从实验结果中归纳出的一般性、概括性的判断,要简练、准确、严谨、客观。

(十二) 鸣谢(可略)

在实验中受到他人的帮助,在报告中以简单语言感谢.

(十三) 参考资料

【实验名称】静电跳球

【实验目的】观察静电力

【实验器材】韦氏起电机,静电跳球装置(如图)

【实验原理、操作及现象】

将两极板分别与静电起电机相连接,顺时针摇动起电机,使两极板分别带正、负电荷,这时小金属球也带有与下板同号的电荷。同号电荷相斥,异号电荷相吸,小球受下极板的排斥和上极板的吸引,跃向上极板,与之接触后,小球所带的电荷被中和反而带上与上极板相同的电荷,于是又被排向下极板。如此周而复始,于是可观察到球在容器内上下跳动。当两极板电荷被中和时,小球随之停止跳动。

【注意事项】

1.摇动起电机时应由慢到快,并且不宜过快;摇转停止时亦需慢慢进行,可松开手柄靠摩擦力使其自然减慢。

2.在摇动起电机时,起电机手柄均带电且高速摇动时电压高达数万伏,切不可用手机或身体其他位置接触,不然会有火花放电,引起触电。

静电跳球中小学科学探究实验室仪器模型设备实验目的:

1、探究静电作用力的现象及原理。

2、研究能量间的转化过程。实验器材:圆铝板2个、圆形有机玻璃筒、静电导体球(由铝膜做成)若干。

提出问题:在以前的实验中,我们对电场以及静电的作用力已经有所了解。那么,在两块极板间,由铝箔做成的小球真能克服重力上蹦下跳吗?猜想与假设:在强电场的作用下,由铝箔做成的小球能够克服重力而上下跳动。           实验过程:

1、在两圆铝板间放一有机玻璃环,里面放了一些静电导体球,当接通高压直流电源后观察静电导体球的运动情况。

2、增大两极板间的电压,观察现象。

3、实验完毕要及时关闭电源,必须用接地线分别接触两极板进行放电。

探究问题:

1、仪器内的小球为什么会跳起来?

2、静电导体球实际在做什么工作?3、为什么增大两极板间的电压两极板间产生火花放电现象?实验结论与体会: (以下由学生总结并交流,也可由教师引导得出)课外活动: 梳子摩擦头发后,用梳子可以吸起细小的纸屑,有些纸屑过一会又掉下来。实际做一做,能够解释吗?

注意事项:

1、接好电路后,再调整两根输出导线之间的距离至少离开10厘米。太近时会击穿空气而打火。

2、接通高压电源后就不能再触摸高压端和电极板,否则会触电而麻木。实验做完后,先关闭电源开关,再用接地线分别接触两个电极进行放电。

展开阅读全文

篇20:大学物理实验报告模板范本_实验报告_网

范文类型:汇报报告,适用行业岗位:大学,全文共 2799 字

+ 加入清单

大学物理实验报告模板范本

大学物理实验报告 热敏电阻

热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性

1、引言

热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:

Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件

常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件

常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理

【实验装置】

FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】

根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为式中 为两电极间距离, 为热敏电阻的横截面。

对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有上式表明 与 呈线,在实验中只要测得各个温度 以及对应的电阻 的值,以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。热敏电阻的电阻温度系数 下式给出。

从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。

热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。

当负载电阻 → ,即电桥输出处于开路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。

若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:(1—5)

在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , 且 ,则(1—6)

式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。

3、热敏电阻的电阻温度特性研究

根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。

根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。

MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性

温度℃ 25 30 35 40 45 50 55 60 65

电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748

非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据

i 1 2 3 4 5 6 7 8 9 10

温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4

热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4

0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4

0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9

4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1

根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。

4、实验结果误差

通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:

表三 实验结果比较

温度℃ 25 30 35 40 45 50 55 60 65

参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748

测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823

相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00

从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。

5、内热效应的影响

在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。

6、实验小结

通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。

展开阅读全文