0

七年级数学相交线与平行线教案精彩12篇

发布于2024-08-26 12:04,全文约 17789 字

篇1:初中七年级上册数学《解一元一次方程》教案优质

一、指导思想

坚持党的基本路线,拥护中国共产党的领导,贯彻党的教育方针、政策,使自己真正成为时代前进的促进派。认真学习《教师法》、《教育法》、《义务教育法》、《教师职业道德规范》及《未成年人保护法》等法律法规,使自己对各项法律法规有更高的认识,做到以法执教。忠诚于党的教育事业,立足教坛,无私奉献,全心全意地搞好教学工作,做一名合格的人民教师。

二、学生情况分析

本学期我担任七年级3班数学教学,该班共有学生38人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

三、教学目标

(一)知识与技能

1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1.采用思考、类比、探究、归纳、得出结论的方法进行教学;

2.发挥学生的主体作用,作好探究性活动;

3.密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力.

(三)情感态度与价值观

1.理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2.逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

四、教材章节分析

第一章《有理数》

1.本章的主要内容:

对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

重点:有理数加、减、乘、除、乘方运算

难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。

2.本章的地位及作用

本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。

第二章《整式的加减》

1.本章的主要内容

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。

重点:去括号,合并同类项。

难点:对单项式系数,次数,多项式次数的理解与应用。

2.本章的地位及作用

整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

第三章《一元一次方程》

1.本章的主要内容

列方程,一元一次方程的概念及解法,列一元一次方程解应用题。

重点:列方程,一元一次方程的解法,

难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。

2.本章的地位及作用

一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想——方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。

第四章《图形认识初步》

1.本章的主要内容、地位及作用

本章主要介绍了多姿多彩的图形(立体图形、平面图?),以及最基本的图形——点、线、角等,并在自主探究的过程中,结合丰富的实例,探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

2.教学重点与难点

教学重点:(1)角的比较与度量;(2)余角、补角的概念和性质;(3)直线、射线、线段和角的概念和性质

教学难点:(1)用几何语言正确表达概念和性质;(2)空间观念的建立。

五、具体教学策略

1.认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。

2.兴趣是的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3.引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

4.引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5.运用读新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念,将带来不同的教育效果。

6.培养学生良好的学习习惯,有助于学生进步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7.进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

8.站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

9.开展课题学习,把学生带入研究的学习中,拓展学生的知识面。

六、进度安排

教学内容课时

1.1正数和负数1课时

1.2有理数4课时

1.3有理数的加减法4课时

1.4有理数的乘除法5课时

1.5有理数的乘方3课时

本章复习2课时

2.1整式2课时

2.2整式的加减3课时

本章复习2课时

3.1从算式到方程4课时

3.2从古老的代数说起—一元一次方程的讨论(1)4课时

3.3从“买布问题”说起—一元一次方程的讨论(2)4课时

3.4再探实际问题和一元一次方程4课时

本章复习2课时

4.1多姿多彩的图形4课时

4.2直线、射线、线段2课时

4.3角的度量3课时

4.4角的比较和运算3课时

本章复习2课时

篇2:七年级上册数学《几何图形》精品教案

1、内容结构分析

《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.

2、教学重点与难点:

教学重点:

⑴ 数学与我们的成长密切相关;

⑵ 数学伴随着人类的进步与发展,人类离不开数学;

⑶人人都能学会数学,激发学生学习数学的兴趣;

⑷将实际问题转化为数学问题;

⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.

教学难点:

⑴体会数学与我们的成长密切相关;

⑵学生剪图拼图的具体操作;

⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.

3、教学目标:

⑴知识与技能:

直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.

⑵过程与方法:

通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.

⑶情感、态度与价值观:

在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.

4、课时分配

4.1几何图形 4课时

4.2直线、射线、线段 3课时

4.3角 2课时

4.4课题学习 2课时

小结 3课时

单元测试与评讲 3课时

篇3:七年级上册数学《几何图形》精品教案

(一)教材所处的地位

人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

(二)单元教学目标

(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。

(4)能分析实际问题中的数量关系,并列出整式表示 .体会用字母表示数后,从算术到代数的进步。

(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

(三)单元教学的重难点

(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。

(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。

(四)单元教学思路及策略

(1)注意与小学相关内容的衔接。

(2)加强与实际的联系。

(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。

(4)抓住重难点、加强练习。

(五)学生学习易错点分析:

(1)忽视单项式的定义,误认为式子 是单项式。

(2)忽视单项式系数的定义,误认为 的系数是4.

(3)忽视单项式的次数的定义,误认为3a的次数是0.

(4)忽视多项式的定义,误认为 是单项式。

(5)忽视多项式的定义,误认为 的次数是7.

(6)忽视多项式的项的定义,误认为多项式 的项分别为 .

(7)把多项式的各项重新排列时,忽视要带它前面的符号。

(8)忽视同类项的定义,误认为2x3y4与-y4x3不是同类项。

(9)合并同类项时,误把字母的指数也相加。

(10) 去括号时符号的处理。

(11)两整式相减时,忽略加括号。

(六)教学建议:

(1)了解整式并学好合并同类项的关键是什么?

整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同类项及其合并是以单项式为基础的,所以,单项式的概念或意义是完成合并的关键。

(2)单项式与多项式有什么联系与区别?

教材中先讲单项式、后讲多项式,然后概括为单项式、多项式统称为整式,对于单项式的系数,仅限于数字系数(单项式中的数字因数),这点务求仔细体会,切不可加以引申,而多项式没有系数;对于次数,单项式的次数指,所有字母的指数之和,而多项式的次数是多项式中次数最高的项(单项式)的次数,需要加以注意的问题是:单项式的系数,包括它前面的符号,不要把常数 作为字母,单项式x的系数是1,且单独一个数(零次单项式)或一个字母,也是单项式,对于0也是一个单项式;多项式的每一项都应包含它前面得符号;单项式和多项式得分母中不能含有字母。

(3)学习合并同类项的方法;

先把同类项分别作上记号,然后根据合并同类项的法则进行合并,合并后把多项式按某一字母降幂或升幂排列;当多项式中同类项的系数互为相反数时,合并后为0;

(4)什么是合并同类项中要加以注意的“两同”?

合并同类项是整式加减的基础,深入理解同类项的概念,又是掌握合并同类项的关键,教材中通过一个探究问题(三个填空题)的引入,进行比较、归纳,从而得出判断同类项的 “两同”标准:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。几个常数项也是同类项,同类项至少有两个,单项式不叫同类项。

(5)其它注意事项:

①整式中,只含一项的是单项式,否则是多项式。分母中含有字母的代数式不是整式,当然也不是单项式或多项式。

②单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数。

③单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号。

④去括号时,要特别注意括号前面是“-”号的情形。

(七)课时安排:

第1课时 单项式

第2课时 多项式

第3课时 整式的加减(1)------合并同类项

第4课时 整式的加减(2)------去括号

第5课时 整式的加减(3)------一般步骤

第6课时 整式的加减(4)------化简求值

第7课时 数学活动

第8课时 复习课

篇4:七年级上册数学《几何图形》精品教案

教学目标

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

(二)知识结构

(三)教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

教学设计示例

有理数的加法(第一课时)

教学目的

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

2.通过有理数的加法运算,培养学生的运算能力.

教学重点与难点

重点:熟练应用有理数的加法法则进行加法运算.

难点:有理数的加法法则的理解.

教学过程

(一)复习提问

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;|3|与|-3|;|-3|与0;

-2与|+1|;-|+4|与|-3|.

(二)引入新课

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

(三)进行新课 有理数的加法(板书课题)

例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8

用数轴表示如图

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米

(-5)+(-3)=-8

用数轴表示如图

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),……同号两数相加

(-4)+(-5)=-( ),…取相同的符号

4+5=9……把绝对值相加

∴ (-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

(3)

2.异号两数相加

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是 5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是 3+(-5)=-2.

请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

最后归纳

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

例如(-8)+5……绝对值不相等的异号两数相加

8>5

(-8)+5=-( )……取绝对值较大的加数符号

8-5=3 ……用较大的绝对值减去较小的绝对值

∴(-8)+5=-3.

口答练习

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)

3.一个数和零相加

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

有理数加法运算的三种情况:

特例:两个互为相反数相加;

(3)一个数和零相加.

每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

(四)例题分析

例1 计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值.

.(强调“两个较大”“一个较小”)

解:#FormatImgID_13#

解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习

1.计算(口答)

(1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);

(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;

2.计算

(1)5+(-22);(2)(-1.3)+(-8)

(3)(-0.9)+1.5;(4)2.7+(-3.5)

篇5:七年级上册数学《几何图形》精品教案

教学目标:

知识与技能:

认识常见的几何图形,并能用自己的语言描述常见几何图形的特征

过程与方法:

1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象

2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念

情感态度价值观:

体验数学学习的乐趣,提高数学应用意识。

教学重点:

通过观察,讨论,思考和实践等活动,让学生会辨识几何体

教学难点:

从具体实物中抽象出几何体的概念

教学方法:

探究式

教学用具:

几何模型、实物、多媒体

教学过程设计:

一、观察与思考

师:1.呈现生活中的一些物体:水杯、书、铅笔、笔筒、乒乓球、苹果、跳棋、冰激凌筒。2.由老师课前准备或当堂演示一些图片

提问:这些物体中哪些形状类似但大小不一样?

学生积极思考,踊跃发言。

引导学生简述自己的理由,用自己的语言描述这些几何体的特征

师:大家在分类的时候有没有考虑他们的颜色、材料、质量?

生:没有

师:我们的生活中有类似形状的许多物体,而对于这些物体如果不考虑他们的颜色、材料、质量,而只注意它们的形状、大小和位置,就得到我们今后要学习的几何图形。

找出你所认识的几何图形

生:圆锥、圆柱、球

师:下面让我们一起来认识它们,(电脑显示上面各物体抽象出来的几何体)配注各几何体名称(中、英文)。请同学们观察,刚才的物体分别类似于屏幕上的哪一种几何体?

圆柱、圆锥、正方、长方体、棱柱、球

circular、cylinder、circular、cone、cube、cuboid、prism、sphere

生:思考,并作出回答

师:让我们一起来回想一下平时的日常生活中所见到过的哪些物体的形状类似于以上的几何体,(在实物与几何体模型之间建立对应关系)。

二、做一做

师:将书上P3的图打到屏幕上,同学们一起做,巩固概念

三、一起探究

1.电脑演示七种几何体,同学们说出它们的名称

2.思考,在上述几何体中,有哪些是我们学过的平面图形?

学生思考一段时间后,同桌交流,将部分几何体拆分,以达到让学生认识几何图形与平面图形的区别的目的。

进一步让学生思考:

(1)立体图形和平面图形的区别是什么?

(2)几何图形分几部分?

四、小结

同学们说说这节课的收获是什么?

收获:(1)初步认识了几何图形,有立体图形和平面图形。

(2)立体图形的分类

小编为大家提供的七年级上册数学几何图形教学计划表大家仔细阅读了吗?最后祝同学们学习进步。

篇6:初中七年级上册数学《解一元一次方程》教案优质

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法

2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。建立一元一次方程的概念。 问题与情境 师生活动 设计意图

一、创设情境,展示问题:

问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。问题1的算术解法:(50+70)÷2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。 示意图有助于分析问题。

二、寻找关系,列出方程

1、对于问题1,如果设王家庄到翠湖的路程是`千米,则: 路程 时间 速度 王家庄-青山 王家庄-秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?

3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。学生思考回答:

1、王家庄-青山(`—50)千米,王家庄-秀水(`+70)千米。

2、汽车以每小时(`-50)÷3千米的速度从王家庄到青山;以每小时(`+70)÷5千米的速度从王家庄到秀水。 让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。

三、定义方程,建立模型

1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“` ”.

(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )

练习二:根据下列问题,设未知数并列出方程。

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为` cm。那么依题意得到方程:_________. (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过`月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________. (3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为`,那么女生数为 ,男生数为 . 由此依题意得到方程:________________。 [议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元`),未知数的指数是1次,这样的方程叫做一元一次方程。

练习三:判断下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)

3、方程的解:再看刚才列出的方程:4`=24,你能观察出当`=?时,4`的值正好等于24吗。学生回答后总结方程的解和解方程的概念。

4、归纳分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。 (学生举例并完成练习一) 师生合作,根据数量关系列出方程。

教师结合练习给出方程、一元一次方程的定义。 (我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解. 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

学生举出方程的例子。 (学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。 学生单独计算,并填表。 学生得出解决实际问题的模型。

四、训练巩固,课堂小结

1、根据下列问题,设未数列方程,并指出是不是一元一次方程。(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

2、小结 本节课你学到了哪些知识?哪些方法?

五、布置作业 A、 必做 82页,第1、2、3、题; B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币? C、课堂评价

1、 本节课的主要知识点是:

2、 你对列方程这节课的感受是:

3、 这节课我的困惑是: 解:(1) 设跑`周. 列方程400`=3000

4、 (2)设甲种铅笔买了`枝,乙种铅笔买了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)设上底为` cm,下底为(`+2)cm.列方程 学生自己探索,独立完成,集体订正。 学生课后完成,并写学习心得。

篇7:初中七年级上册数学《解一元一次方程》教案优质

教学目的和要求:

1.使学生了解有理数加法的意义。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

教学重点和难点:

重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

难点:理解有理数加法法则,尤其是异号两数相加的情形。

教学工具和方法:

工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

教学过程:

一、复习引入:

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

2.问题:[

一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

[来源:学#科#网]

二、讲授新课:

1.发现、总结(分类):

我们必须把问题说得明确些,并规定向东为正,向西为负。

(同号两数相加法则)

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,

即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:

(2)若两次都是向西走,则他现在位于原来位置的西方50米处,

写成算式就是: (―20)+(―30)=―50。

(师生共同归纳同号两数相加法则:[来源:Z+··+]

同号两数相加,取相同的符号,并把绝对值相加)

(异号两数相加法则)

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:

写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。

后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):

你能发现和与两个加数的符号和绝对值之间有什么关系吗?

(+4)+(―3)=( ); (+3)+(―10)=( );

(―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。

(师生共同归纳异号两数相加法则:

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)

(互为相反数的两数相加为零

问题:会不会出现和为0的情况?

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)= ( )。

师生共同归纳法则3:互为相反数的两数相加得0)

问题:你能有法则来解释法则3吗?

学生回答:可以用异号两数相加的法则)

((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0= ( )。我们不难得出它们的结果。

一般地,一个数同0相加,仍得这个数)

2.概括:

综合以上情形,我们得到有理数的加法法则:

(1) 同号两数相加,取相同的符号,并把绝对值相加;

(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3) 互为相反数的两个数相加得0;

(4)一个数同0相加,仍得这个数.

注意:

一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

3.例题:

例:计算:

(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

解:(1)解原式=―(11―2)=―9;

(2)解原式=+(20+12)=+32=32;

(3)解原式=;

(4)解原式= +(4.3―3.4)=0.9。

4.五分钟测试:

计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

三、课堂小结:

这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.

应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。

(运算的关键:先分类,在按法则运算

运算步骤:先确定符号,再计算绝对值

注意问题:要借助数轴来进一步验证有理数的加法法则)

四、课堂作业:

课本:P18:1,2,3。

板书设计:

教学后记:

篇8:初中七年级上册数学《解一元一次方程》教案优质

教学目标

知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.

过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.

教学重难点

重点:去括号法则,准确应用法则将整式化简.

难点:括号前面是“-”号,去括号时括号内各项都变号.

教学过程

一、复习旧知

1. 化简

-(+5) +(+5) -(-7) +(-7)

2. 去括号

① -(3- 7) ② +(3- 7)

二、探索新知

想一想:根据分配律,你能为下面的式子去括号吗?

①+(- a+c) ② - (- a+c)

③ +(a-b+c) ④ -(a-b+c)

观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?

去括号法则:

括号前是“+”号的,把括号和它前面的“+”号去掉,

括号里各项都不改变符号;

括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,

括号里各项都改变符号。

顺口溜:

去括号,看符号;是“+”号,不变号;是“-”号,全变号。

三、巩固练习:

(1)去括号:

a+(b-c)= _______ a- (b-c)= ______

a+(- b+c)= _______ a- (- b+c)= ______

(2)判断正误

a-(b+c)=a-b+c ( )

a-(b-c)=a-b-c ( )

2b+(-3a+1)=2b-3a-1 ( )

3a-(3b-c)=3a-3b+c ( )

四、例题学习:为下面的式子去括号

+3(a - b+c) - 3(a - b+c)

五、课堂检测:

去括号:

① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)

六、课堂小结

去括号时应注意的事项:

(1)、去括号时应先判断括号前面是“+”号还是“-”号。

(2)、去括号后,括号内各项符号要么全变号,要么全不变号。

(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。

七、布置作业:

必做题:课本70页习题2.2 第2,3题

选做题:课本70页 习题2.2 第4题

篇9:初中七年级上册数学《解一元一次方程》教案优质

教学目标

1.知识与技能

(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.

2.过程与方法

(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.

(2)经历问题解决的过程,提高解决问题的能力.

3.情感态度与价值观

(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;

(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.

重、难点与关键

1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.

2.难点:立体图形与平面图形之间的转化是难点.

3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.

教具准备

长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图

教学过程

一、引入新课

1.打开课本,看第117页城市的现代化建筑,学生认真观看.

2.提出问题:有哪些是我们熟悉的几何图形?

二、新授

1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.

2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等.

教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.

3.立体图形的概念.

(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.

(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

(3)用教学挂图展示图4.1-4

(4)提出问题:在挂图中中,包含哪些简单的平面图形?

(5)探索解决问题的方法.

①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.

②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.

4.平面图形的概念.

长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形. 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.

5.立体图形和平面图形的转化.

(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.

(2)提出问题.

从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

(3)探索解决问题的方法.

①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.

②进行小组交流,评价各自获得的结论,得出正确结论. ③指定三名学生,板书画出的图形.

6.思考并动手操作.

篇10:初中七年级上册数学《解一元一次方程》教案优质

第一课时

平面图形的认识

教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。‘

教学过程:

直线、射线、线段。

提问:1)分别说一说什么叫直线、射线、线段?

直线、射线和线段有什么区别?

完成123页上面的“做一做”。(同学笔做)

提问:1)什么叫做角?

2)角的大小与什么有关?

整理:把表中的空格填写完整。

完成123页下面“做一做”的1题、2题。

锐角

直角

钝角

平角

周角

大于0°

小于90°

垂直与平行

提问:

1)在同一平面内,两条直线的相互位置有哪几种情况?

2)什么样的两条直线叫做互相垂直?

什么样的两条直线叫做互相平行?

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

完成教材124页的“做一做”

三角形。

提问:

1)什么叫做三角形?

2)在下面的三角形中,顶点A的对边是指哪一条边?

先笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

在下面的表中填写三角形的名称和各自的特征。

名称

图形

特征

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

四边形

提问:什么叫四边形?

回答:看图说出下面各图的特点,再说一说图中各字母表示什么

想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

完成125页“做一做”中的1、2题。

篇11:七年级上册数学《几何图形》精品教案

学习目标:

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

学习重点、难点:有理数加减法统一成加法运算

教学方法:讲练相结合

教学过程

一、学前准备

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米

记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米.

2、你是怎么算出来的,方法是

二、探究新知

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写

如:(-20)+(+3)-(-5)-(+7) 有加法也有减法

=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法

= -20+3+5-7 再把加号记在脑子里,省略不写

可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.

4、师生完整写出解题过程

三、解决问题

1、解决引例中的问题,再比较前面的方法,你的感觉是

2、例题:计算-4.4-(-4 )-(+2 )+(-2 )+12.4

3、练习:计算 1)(—7)—(+5)+(—4)—(—10)

三、巩固

1、小结:说说这节课的收获

2、P241、2

3、计算

1)27—18+(—7)—32 2)

四、作业

1、P255 2、P26第8题、14题

篇12:初中七年级上册数学《解一元一次方程》教案优质

【学习目标】

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

【重点难点】能验证一个数是否是一个方程 的解。

【导学指导】

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

1. 一元一次方程的概念

观察下面方程的特点

(1)4 =24;(2)1700+150=2450

(3)0.52`-(1-0.52`)=80

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

2.方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

例 检验2和-3是否为方程 的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=2 方程的解(填是或不是)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=3 方程的解(填是或不是)

【课堂练习】

1.判断下列是不是一元一次方程,是打“√”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

2.检验3和-1是否为方程 的解。

3.`=1是下列方程( )的解:

(A) , ( B) ,

(C) ), ( D)

4 、已知方程 是关于`的一元一次方程,则a= 。

【要点归纳】:

1. 这节课我们学习了什么内容?

2.什么是方程的解?如何检验一个数是否是方程的解?

【拓展训练】:

1.检验2和 是否为方程 的解。

2.老师要求把一篇有20__字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)