HPLC测定酚类化合物实验报告
1.实验目的
(1)了解仪器各部分的构造和功能及分析的原理
(2)掌握样品、流动相的处理、仪器的维护等基本知识
(3)学会简单样品的分析操作过程
(4)掌握HPLC分析的定性、定量方法
2.基本原理
高效液相色谱仪以液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。
对于酚类化合物的测定,其基本原理是这样的:先用固相小柱吸附水中酚类化合物,然后用溶剂洗脱,经氮吹气浓缩至一定体积后,用反相高压液相色谱法分析。在反相色谱柱上以甲醇/(水+乙酸)为流动相把经预处理的酚类化合物分离,用二极阵列检测器或紫外检测器,测定各种酚的峰高或峰面积,以外标法定量。
3.仪器与试剂
3.1仪器:高效液相色谱仪:可编程紫外检测器
微量注射器:50μL、100μL
色谱柱:C18或C8柱
化学工作站
尖底浓缩瓶:10ml 具刻度
富集柱
3.2试剂:流动相:甲醇/高纯水(需Φ0.22μm滤膜过滤)
标准物:六种酚类混合物
洗脱液:正己烷、 四氢呋喃(需重蒸)
硫酸
冰醋酸
无水亚硫酸钠
4.所用仪器的主要组件
(1) 高压输液泵
主要部件之一,压力:150×105~350×105 Pa。
为了获得高柱效而使用粒度很小的固定相(
应具有压力平稳、脉冲小、流量稳定可调、耐腐蚀等特性。
(2) 梯度淋洗装置
外梯度(高压梯度):用两台高压输液泵,将两种不同极性的溶剂按一定的比例送入梯度混合室,混合后进入色谱柱。
内梯度(低压梯度):一台高压泵,通过比例调节阀,将两种或多种不同极性的溶剂按一定的比例抽入高压泵中混合。
(3) 进样装置
流路中为高压力工作状态,通常使用耐高压的六通阀进样装置。
(4) 高效分离柱
柱体为直形不锈钢管,内径1~6 mm,柱长5~40 cm。发展趋势是减小填料粒度和柱径以提高柱效。
(5) 液相色谱检测器
Ⅰ 紫外检测器
应用最广,对大部分有机化合物有响应。
特点:灵敏度高,线形范围宽;流通池可做得很小(1mm×10mm,容积8μL);对流动相的流速和温度变化不敏感;波长可选,易于操作;可用于梯度洗脱。
Ⅱ 光电二极管阵列检测器
光电二极管阵列检测器:1024个二极管阵列,各检测特定波长,计算机快速处理,三维立体谱图。
Ⅲ 示差折光检测器
除紫外检测器之外应用最多的检测器。可连续检测参比池和样品池中流动相之间的折光指数差值。差值与浓度成正比。
Ⅳ 荧光检测器
高灵敏度,高选择性。对多环芳烃,维生素B、黄曲霉素、卟啉类化合物、农药、药物、氨基酸、甾类化合物等有响应。
5.数据处理
(1)原始数据
实验所得色谱图
①根据标准样品的实验数据,做出峰面积随浓度变化的标准曲线。
②根据标准曲线,计算实际单标中的物质浓度
单标为8ppm的标样物质实际浓度: C=7.990ppm
更多相似范文
篇1:生物实验报告《观察植物细胞的有丝分裂》_实验报告_网
一、实验目的
1.观察植物细胞有丝分裂的过程,识别有丝分裂的不同时期。
2.初步掌握制作洋葱根尖有丝分裂装片的技能。
3.初步掌握绘制生物图的方法。
二、实验原理
在植物体中,有丝分裂常见于根尖、茎尖等分生区细胞,高等植物细胞有丝分裂的过
程,分为分裂间期和分裂期的前期、中期、后期、末期。可以用高倍显微镜观察植物细胞的
有丝分裂的过程,根据各个时期细胞内染色体(或染色质)的变化情况,识别该细胞处于有
丝分裂的哪个时期,细胞核内的染色体容易被碱性染料着色。
三、材料用具
洋葱根尖、显微镜、载玻片、盖玻片、滴管、镊子、培养皿、铅笔、质量分数为15%的盐酸、
体积分数为95%的酒精、质量分数为0.01g/ml的龙胆紫(或紫药水)
四、实验过程(见书P39)
1.洋葱根尖的培养(提前3—4天)
2.解离:5min
3.漂洗: 10min
4.染色: 5min
5.制片
6.镜检
五、注意
1.解离充分是实验成功的必备条件。解离充分,组织才能分散,细胞也不会重叠。
2 .漂洗时间一定要足够,否则细胞染不上色。
3 .染色时,染液的浓度和染色时间必须掌握好。特别是染色不能过深,否则镜下一片紫色,无法观察。
六、讨论
1.制作好洋葱根尖有丝分裂装片的关键是什么?谈谈你自己的体会。
物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板
2.在观察清楚有丝分裂各个时期的细胞以后,绘出洋葱根尖细胞有丝分裂的简图,并标明时期。
篇2:金属材料硬度实验测定实验报告_实验报告_网
金属材料硬度实验测定实验
一、实验目的
(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。
(2)学会正确使用硬度计。
二、实验设备
(1)布氏硬度计
(2)读数放大镜
(3)洛氏硬度计
(4)硬度试块若干
(5)铁碳合金退火试样若干(ф20×10mm的工业纯铁,20,45,60,T8,T12等)。
(6)ф20×10mm的 20,45,60,T8,T12钢退火态,正火态,淬火及回火态的试样。
三、实验内容
1、概述
硬度是指材料抵抗另一较硬的物体压入表面抵抗塑性变形的一种能力,是重要的力学性能指标之一。与其它力学性能相比,硬度实验简单易行,又无损于工件,因此在工业生产中被广泛应用。常用的硬度试验方法有:
布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。
洛氏硬度试验——主要用于金属材料热处理后产品性能检验。
维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。 显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。
2、实验内容及方法指导
(1)布氏硬度试验测定。
(2)洛氏硬度试验测定。
(3)试验方法指导。
3、实验注意事项
(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。
(2)圆柱形试样应放在带有“V”形槽的工作台上操作,以防试样滚动。
(3)加载时应细心操作,以免损坏压头。
(4)测完硬度值,卸掉载荷后,必须使压头完全离开试样后再取下试样。
(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。
(6)应根据硬度实验机的使用范围,按规定合理选用不同的载荷和压头,超过使用范围,将不能获得准确的硬度值。
四、实验步骤
1、布氏硬度 试验
布氏硬度试验是用载荷P把直径为D的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积A,然后再计算出单位面积所受的力(P/A值),用此数字表示试件的硬度值,即为布氏硬度,用符号HB表示。
设压痕深度为h,则压痕的球面积为
A=πDh=πD
试中 P——施加的载荷,kg;
D——压头(钢球)直径 mm;
A——压痕面积,mm;
d——压痕直径,mm。
2、洛氏硬度试验
洛氏硬度试验是用特殊的压头(金刚石压头或钢球压头)在先后施加的两个载荷(预载荷和总载荷)的作用下压入金属表面来进行的。总载荷P为预载荷P0和主要载荷P1之和,即
P= P0+ P1
洛氏硬度值是施加总载荷P并卸除主载荷P1引起的残余压入深度e来计算。 用h0表示在预载荷P0作用下,压头压入被试材料的深度;h1表示施加总载荷P并卸除主载荷P1,但仍保留预载荷P0时,压头压入被试材料的深度。
深度差e= h1+ h0,该值用来表示被测材料硬度的高低。在实际应用中,为了使硬材料测出的硬度值比软材料的硬度值高,并符合一般的习惯,将被测材料的硬度值用公式加以适当变换,即
HR=K-(h1-h0)/C
试中K――常数,其值在采用金刚石压头时为0.2,采用钢球压头时为0.26;
C——常数,代表指示器读数盘每一刻度相当于压头压入被测材料的深度,其值为0.002mm;
HR——标注洛氏硬度的符号,当采用金刚石压头及150 kg的总载荷时应标注HRC,当采用钢球压头及100kg,总载荷试验时,则应标注HRB。 2
HR值为一无名数,测量时可直接由硬度计表盘读出,表盘上有红﹑黑两种刻度,红线刻度的30和黑线刻度的0相重合。
学生分成若干组,利用备好的硬度试块或试样,在硬度计上测定其相应硬度值,使之学会硬度计的使用方法。
五、实验 报告书
(1)简述布氏和洛氏硬度试验原理。
(2)测定碳钢(20﹑45﹑60﹑T8﹑T12)退火试样的布氏硬度值(HBS)。
(3)测定碳钢(45﹑T8﹑T12)正火及淬火试样的洛氏硬度值(HRC)。
(4)测定45钢调质试样的洛氏硬度值(HRC)。
篇3:植物生长区域测定的实验报告_实验报告_网
【实验目的】
1. 了解植物体内N、P、K测定的意义和方法
2. 掌握如何测定植物体中N、P、K的实验技能
【实验原理】
植物体主要由C、H、O、N、P、K、Ca、Mg、S、Fe等十几种元素组成,除此以外还包括Ca、Zn、Mn、B、Mo,但需要量较少。
在通常条件下,植物利用太阳光能,从空气中获得C,从水中获得氢和氧,而N、P、K等元素则是来源土壤肥力。在栽培过程中,能够知道植物的需要和土壤内N、P、K变动的情况,对考虑施肥措施是有帮助的,因此测定土壤及植物体内的N、P、K是很重要的。
硝态N测定:硝态N是硝酸的阴离子(NO3-),它是强氧化剂,所以鉴定N-离子几乎都用氧化反应,用二苯胺(C6H5)2NH的方法,这个方法的原理是在NO3-存在时二苯胺被硝酸氧化而显蓝色。
有效P和无机P测定:P与钼酸铵反应生成磷钼酸铵,然后以氧化亚锡作为还原剂时,使磷钼酸铵还原为“磷钼兰”(低价钼化合物混合物)溶液呈兰色。此法能测土壤有效P,过磷酸钙中有效P和植物体内的无机磷。
速效K的测定:四苯硼钠〔NaB(C6H5)4〕与钾离子生成白色沉淀为四苯硼酸钾〔KB(C6H5)4〕
【实验材料和试剂】
在完全培养液、缺乏N、P、K、Fe的营养液中培养四周的玉米苗。
硝态氮试剂、磷试剂Ⅰ、磷试剂Ⅱ、K试剂、标准溶液1、5、10、20、40ppm。
【实验方法】
1. 植物组织浸提液制备
将植物剪成小块,称取1g,迅速倒入已沸腾的蒸馏水(约10ml)烧杯中,用毛细玻璃棒经常搅动,小火煮十分钟,煮液倒入10ml容量瓶中,另加少量蒸馏水,继续小火煮植物材料5分钟,浸提液倒入上述容量瓶内,再以少量蒸馏水洗植物材料,使最后容量为10ml。
植物组织在计算含量时要乘以10,因每克鲜组织稀释了10倍。
2. 硝态N测定
在白瓷板的凹内分别滴入1、5、10、20、40ppm的混合标准液1滴,然后将待测液(植物浸提液)分别滴入其他凹内,最后每个凹内各加5滴二苯胺硫酸溶液,用毛细玻璃棒搅匀,3-5分钟,观察标准液与待测液蓝色变化,待测液的蓝色近似于某标准液的蓝色,就是待测液的硝态N含量。
3. 有效P和无机P测定
在白瓷板的凹内,分别滴入1、5、10、20、40ppm混合标准液和待测液各5滴,然后加入钼酸铵硫酸溶液1滴,用毛细玻璃棒搅匀后,加入氧化亚锡甘油溶液1滴,搅匀,比较标准液和待测液的蓝色,求出待测液的有效P的含量(ppm),蓝色愈深,有效磷含量愈高。
4. 速效K测定
在透明凹玻璃的凹内,分别滴入1、5、10、20、40ppm混合标准液和待测液1滴,然后加四苯硼钠溶液1滴,十分钟后在阳光下比较标准液与待测液的白色混浊,找出相应的钾含量。
【实验结果】
(在制备浸提液时每克植物鲜组织稀释了10倍,所以在计算含量时要乘以10)
【实验结果分析】
1. 缺氮条件下培养的玉米苗生长缓慢,但叶绿素含量并未显著降低,但硝态氮含量明显少,说明大部分氮以有机态存在,而同时磷元素的含量非常低,说明氮元素影响磷的吸收,这可能是因为植物生长时,高氮素水平下的根系需要更多的NAD(P)H和ATP参与氮的代谢,从而增强磷的吸收,反之则减少磷的吸收,同时植物根系过低的代谢水平影响了钾离子的吸收。
2. 缺磷条件下培养的玉米苗磷含量相当低。是因为植株缺磷时,根保留其所吸收的大部分磷,地上部分发育所需的磷主要靠茎叶中磷的再利用,营养器官中的无机态磷含量明显下降。又因为缺磷时,作为抗逆机制,光合产物运到根系的比例增加,根部呼吸作用增强,吸收的其它的元素反而多,植株长势也好。
3. 缺钾情况下,磷含量降低,首先多种酶的活性取决于细胞质内钾离子的浓度,稳定的钾离子含量是细胞进行正常代谢的保证,更重要的是,钾的吸收可以使氢离子泵出,导致根外PH值降低并建立质子驱动力,同时使磷酸根载体质子化,促进磷的吸收,但钾元素不足,就影响了磷元素的吸收。
4. 缺铁情况下,磷的含量显著降低,可能是由于一种抗逆机制,因为无机磷的存在会进一步降低铁的有效浓度。
篇4:弱酸电离度与电离常数的测定实验报告范文_实验报告_网
篇一:无机化学实验六 醋酸电离度和电离常数的测定
一、实验目的
1.测定醋酸的电离度和电离常数;
2.学习pH计的使用。 [教学重点]
醋酸的电离度、电离常数的测定 [教学难点] pH计的使用 [实验用品]
仪器:滴定管、吸量管(5mL)、容量瓶(50 mL)、pH计、玻璃电极、甘汞电极
药品:0、200 mol·L-1HAc标准溶液、0、200 mol·L-1NaOH标准溶液、酚酞指示剂、标准缓冲溶液
(pH=6、86、pH=4、00)
二、基本原理
HAc → H++ Ac-
C:HAc的起始浓度;[H+]、[Ac-]、[HAc]:分别为平衡浓度; α:电离数;K:平衡常数
α =
× 100%
Ka = =
当α小于5时,C - [H+]≈C,所以Ka≈
根据以上关系,通过测定已知浓度HAc溶液的pH值,就可算出[H+],从而可以计算该HAc溶液的电离度和平衡常数。(pH=-lg[H+],[H+]=10-pH)
三、实验内容
1.HAc溶液浓度的测定(碱式滴定管)
以酚酞为指示剂,用已知浓度的NaOH溶液测定HAc的浓度。
滴定序号 aOH(mol·L-1) VHAc(mL VNaOH(mL CHAc
测定值 平均值
25、001
2 25、00
25、003
2.配制不同浓度的HAc溶液
用移液管或吸量管分别取2、50 mL、5、00 mL、25、00 mL已测得准确浓度的HAc溶液,分别加入3只50 mL容量瓶中,用去离子水稀释至刻度,摇匀,并计算出三个容量瓶中HAc溶液的准确浓度。将溶液从稀到浓排序编号为:1、2、3,原溶液为4号。
3.测定HAc溶液的pH值,并计算HAc的电离度、电离常数
把以上四种不同浓度的HAc溶液分别加入四只洁净干燥的50 L杯中,按由稀到浓的顺序在pH计上分别测定它们的pH值,并记录数据和室温。将数据填入下表(p、129、),计算HAc电离度和电离常数。
溶液
C (mol·L-1)
pH
[H+]
α(%)
电离常数K
编号 1 2 3 4
四、提问
1/20 CHAc 1/10 CHAc 1/2 CHAc CHAc
(mol·L-1)
测定值
平均值
K值在1、0×10-5~2、0×10-5范围内合格(文献值25℃1、76×10-5)
1.烧杯是否必须烘干?还可以做怎样的处理? 答:不需烘干,用待测溶液荡洗2~3次即可。 2.测定原理是什么?
五、思考题
1.若所用HAc溶液的浓度极稀,是否还能用近似公式Ka=[H+]2/C来计算K,为什么? 答:若CHAc很小,则C酸/Ka就可能不大于400,就不能用近似公式Ka=[H+]2/C,如用近似公式,会造成较大的误差。
2.改变所测HAc溶液的浓度或温度,则有无变化? 答:CHAc减小,α增大,Ka不变;
Ka随T改变而变化很小,在室温范围内可忽略。
六、注意事项
1.测定HAc溶液的pH值时,要按溶液从稀到浓的次序进行,每次换测量液时都必须清洗电极,并吸干,保证浓度不变,减小误差。
2.PHs-PI酸度计使用时,先用标准pH溶液校正。
3.玻璃电极的球部特别薄,要注意保护,安装时略低于甘汞电极,使用前用去离子水浸泡48小时以上。
4.甘汞电极使用时应拔去橡皮塞和橡皮帽,内部无气泡,并有少量结晶,以保证KCl溶液是饱和的,用前将溶液加满,用后将橡皮塞和橡皮帽套好。
附:介绍PHs-PI酸度计的使用方法及注意事项。 pH电极的标定:
1.定位:将洗净的电极插入pH=7的缓冲溶液中,调节TEMP(温度)旋钮,使指示的温度与溶液温度一致。打开电源开关,再调节CALIB(校准)旋钮,使仪器显示的pH值与该缓冲溶液在此温度下的pH值相同。
2.调节斜率:把电极从缓冲溶液中取出,洗净,吸干,插入pH=4的缓冲溶液中,调SLOPE(斜率)旋钮,使仪器显示的pH值与该溶液在此温度下的pH值相同,标定结束(测量碱性溶液时,用pH=9的缓冲溶液调节斜率)。
pH值测定:调节好的旋钮就不要再动,将待测溶液分别进行测量,待读数稳定时记录pH值。
篇二:实验八 醋酸电离度和电离平衡常数的测定
一、实验目的
1、测定醋酸电离度和电离平衡常数。
2、学习使用pH计。
3、掌握容量瓶、移液管、滴定管基本操作。
二、实验原理
醋酸是弱电解质,在溶液中存在下列平衡:
HAc
+ H
+ Ac-
[H][Ac]c2
Ka
[HAc]1
式中[ H+]、[ Ac-]、[HAc]分别是H+、 Ac-、HAc的平衡浓度;c为醋酸的起始浓度;Ka
为醋酸的电离平衡常数。通过对已知浓度的醋酸的pH值的测定,按pH=-lg[H+]换算成[H+],[H]
根据电离度,计算出电离度α,再代入上式即可求得电离平衡常数Ka。
三、仪器和药品
仪器:移液管(25mL),吸量管(5mL),容量瓶(50mL),烧杯(50mL),锥形瓶(250mL),碱式滴定管,铁架,滴定管夹,吸气橡皮球,Delta320-S pH计。
药品:HAc(约0、2mol·L-1),标准缓冲溶液(pH=6、86,pH=4、00),酚酞指示剂,标准NaOH溶液(约0、2mol·L-1)。
四、实验内容
1.醋酸溶液浓度的标定
用移液管吸取25mL约0、2mol·L-1 HAc溶液三份,分别置于三个250mL锥形瓶中,各加2~3滴酚酞指示剂。分别用标准氢氧化钠溶液滴定至溶液呈现微红色,半分钟不褪色为止,记下所用氢氧化钠溶液的体积。从而求得HAc溶液的精确浓度(四位有效数字)。
2.配制不同浓度的醋酸溶液
用移液管和吸量瓶分别取25mL,5mL,2、5mL已标定过浓度的HAc溶液于三个50mL容量瓶中,用蒸馏水稀释至刻度,摇匀,并求出各份稀释后的醋酸溶液精确浓度(cc,210c)的值(四位有效数字)。
3.测定醋酸溶液的pH值
用四个干燥的50mL烧杯分别取30~40mL上述三种浓度的醋酸溶液及未经稀释的HAc溶液,由稀到浓分别用pH计测定它们的pH值(三位有效数字),并纪录室温。
4.计算电离度与电离平衡常数
根据四种醋酸的浓度pH值计算电离度与电离平衡常数。
五、数据纪录和结果
1、醋酸溶液浓度的标定
滴定序号
标准NaOH溶液的浓度/ mol·L-1 所取HAc溶液的量/mL 标准NaOH溶液的用量/ mL 实验测定HAc 测定值 溶液精确浓度/ mol·L-1 平均值
2、醋酸溶液的pH值测定及平衡常数、电离度的计算 t = ℃
HAc溶液编号 1 (c/20) 2 (c/10) 3 (c/2) 4 (c)
cHAc/ mol·L-1
pH
[H+]/ mol·L-1
α/%
Ka
六、预习要求及思考题
1.预习要求
(1)认真预习电离平衡常数与电离度的计算方法,以及影响弱酸电离平衡常数与电离度的因素。
(2)pH计的型号不同使用方法也略有区别,使用前应认真预习,熟悉实验所用型号的
pH计的使用方法。
2.思考题
(1)标定醋酸浓度时,可否用甲基橙作指示剂?为什么?
(2)当醋酸溶液浓度变小时,[H+]、α如何变化?Ka值是否随醋酸溶液浓度变化而变化?
(3)如果改变所测溶液的温度,则电离度和电离常数有无变化?
篇三:实验三醋酸电离度和电离平衡常数的测定
一、实验目的
1、测定醋酸的电离度和电离平衡常数。
2、学会正确地使用pH计。
3、练习和巩固容量瓶、移液管、滴定管等仪器的基本操作。
二、实验原理
醋酸CH3COOH(简写为HAc)是一元弱酸,在溶液中存在下列电离平衡:
HAc(aq)+H2O(l)
H3O+(aq)+Ac-(aq)
忽略水的电离,其电离常数:
首先,一元弱酸的浓度是已知的,其次在一定温度下,通过测定弱酸的pH值,由pH=-lg[H3O+],可计算出其中的[H3O+]。对于一元弱酸,当c/Ka≥500时,存在下列关系式:
[H3O+]2[H3O+] Ka
cc
[H3O+][Ac-][H3O+]2
Ka
[HAc][HAc]
由此可计算出醋酸在不同浓度时的解离度和醋酸的电离平衡常数(Ka)。或者也可由
Kac2计算出弱酸的解离常数(Ka)。
三、仪器和试药
仪器:移液管、吸量管、容量瓶、碱式滴定管、锥形瓶、烧杯、量筒、pHS-3C型酸度计。 试剂:冰醋酸(或醋酸)、NaOH标准溶液(0、1mol·L-1)、标准缓冲溶液(pH=6、86, 4、00)、酚酞溶液(1%)。
四、实验内容
1、配置250mL浓度为0、1mol·L-1的醋酸溶液
用量筒量取4mL 36%(约6、2 mol·L-1)的醋酸溶液置于烧杯中,加入250mL蒸馏水稀释,混匀即得250mL 浓度约为0、1mol·L-1的醋酸溶液,将其储存于试剂瓶中备用。
2、醋酸溶液的标定
用移液管准确移取25、00mL醋酸溶液(V1)于锥型瓶中,加入1滴酚酞指示剂,用标准NaOH溶液(c2)滴定,边滴边摇,待溶液呈浅红色,且半分钟内不褪色即为终点。由滴定管读出所消耗的NaOH溶液的体积V2,根据公式c1V1=c2V2计算出醋酸溶液的浓度c1。平行做三份,计算出醋酸溶液浓度的平均值。
3、pH值的测定
分别用吸量管或移液管准确量取2、50、5、00、10、00、25、00mL上述醋酸溶液于四个50mL的容量瓶中,用蒸馏水定容,得到一系列不同浓度的醋酸溶液。将四溶液及0、1mol·L-1原溶液按浓度由低到高的顺序,分别用pH计测定它们的pH值。
4、由测得的醋酸溶液pH值计算醋酸的电离度、电离平衡常数。
五、实验结论 数据记录与处理
编号 1 2 3 4 5
V HAc / mL 2、50 5、00 10、00 25、00 50、00
c HAc / mol·L-1
pH
[H+] / mol·L-1
Ka
六、注意事项
1、测定醋酸溶液pH值用的小烧杯,必须洁净、干燥,否则,会影响醋酸起始浓度,以及所测得的pH值。
2、吸量管的使用与移液管类似,但如果所需液体的量小于吸量管体积时,溶液仍需吸至刻度线,然后放出所需量的液体。不可只吸取所需量的液体,然后完全放出。
3、pH计使用时按浓度由低到高的顺序测定pH值,每次测定完毕,都必须用蒸馏水将电极头清洗干净,并用滤纸擦干。
七、思考题
1、用pH计测定醋酸溶液的pH值,为什么要按浓度由低到高的顺序进行?
2、本实验中各醋酸溶液的[H+]测定可否改用酸碱滴定法进行?
3、醋酸的电离度和电离平衡常数是否受醋酸浓度变化的影响?
4、若所用醋酸溶液的浓度极稀,是否还可用公式 Ka[H3O] 计算电离常数?
篇5:物理实验报告《分光计的调整和三棱镜顶角的测定》_实验报告_网
【实验目的】
1. 了解分光计的结构,学习分光计的调节和使用方法;
2. 利用分光计测定三棱镜的顶角;
【实验仪器】
分光计,双面平面反射镜,玻璃三棱镜。
【实验原理】
如图6所示,设要测三棱镜AB面和AC面所夹的顶角a,只需求出j即可,则a=1800-j。
图6 测三棱镜顶角
【实验内容与步骤】
一、分光计的调整
(一)调整要求:
1.望远镜聚焦平行光,且其光轴与分光计中心轴垂直。
2.载物台平面与分光计中心轴垂直。
(二)望远镜调节
1.目镜调焦
目镜调焦的目的是使眼睛通过目镜能很清楚地看到目镜中分划板上的刻线和叉丝,调焦办法:接通仪器电源,把目镜调焦手轮12旋出,然后一边旋进一边从目镜中观察,直到分划板刻线成像清晰,再慢慢地旋出手轮,至目镜中刻线的清晰度将被破坏而未被破坏时为止。旋转目镜装置11,使分划板刻线水平或垂直。
2.望远镜调焦
望远镜调焦的目的是将分划板上十字叉丝调整到焦平面上,也就是望远镜对无穷远聚焦。其方法如下:将双面反射镜紧贴望远镜镜筒,从目镜中观察,找到从双面反射镜反射回来的光斑,前后移动目镜装置11,对望远镜调焦,使绿十字叉丝成像清晰。往复移动目镜装置,使绿十字叉丝像与分划板上十字刻度线无视差,最后锁紧目镜装置锁紧螺丝 10 .
(三)调节望远镜光轴垂直于分光计中心轴(各调一半法)
调节如图7 所示的载物台调平螺丝 b 和 c 以及望远镜光轴仰角调节螺丝13,使分别从双面反射镜的两个面反射的绿十字叉丝像皆与分划板上方的十字刻度线重合,如图8(a)所示。此时望远镜光轴就垂直于分光计中心轴了。具体调节方法如下:
(1)将双面反射镜放在载物台上,使镜面处于任意两个载物台调平螺丝间连线的中垂面,如图7所示。
图7 用平面镜调整分光计
(2)目测粗调。用目测法调节载物台调平螺丝7及望远镜、平行光管光轴仰角调节螺丝13、29,使载物台平面及望远镜、平行光管光轴与分光计中心轴大致垂直。
由于望远镜视野很小,观察的范围有限,要从望远镜中观察到由双面反射镜反射的光线,应首先保证该反射光线能进入望远镜。因此,应先在望远镜外找到该反射光线。转动载物台,使望远镜光轴与双面反射镜的法线成一小角度,眼睛在望远镜外侧旁观察双面反射镜,找到由双面反射镜反射的绿十字叉丝像,并调节望远镜光轴仰角调节螺丝 13 及载物台调平螺丝 b 和 c ,使得从双面反射镜的两个镜面反射的绿十字叉丝像的位置应与望远镜处于同一水平状态。
(3)从望远镜中观察。转动载物台,使双面反射镜反射的光线进入望远镜内。此时在望远镜内出现清晰的绿十字叉丝像,但该像一般不在图8(a)所示的准确位置,而与分划板上方的十字刻度线有一定的高度差,如图8(b)所示。调节望远镜光轴仰角调节螺丝13,使高度差 h 减小一半,如图8(c)所示;再调节载物台调平螺丝b 或c,使高度差全部消除,如图8(d)所示。再细微旋转载物台使绿十字叉丝像和分划板上方的十字刻度线完全重合,如图8(a)所示。
物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板
图(8) 各调一半法
(4)旋转载物台,使双面反射镜转过180°,则望远镜中所看到的绿十字叉丝像可能又不在准确位置,重复(3)所述的各调一半法,使绿十字叉丝像位于望远镜分划板上方的十字刻度线的水平横线上。
(5)重复上述步骤(3)(4),使经双面反射镜两个面反射的的绿十字叉丝像均位于望远镜分划板上方的十字刻度线的水平横线上。
至此,望远镜的光轴完全与分光计中心轴垂直。此后,望远镜光轴仰角调节螺丝13不能再任意调节!
二、三棱镜顶角的测定
1.待测件三棱镜的调整
如图9(a)放置三棱镜于载物台上。转动载物台,调节载物台调平螺丝(此时不能调望远镜),使从棱镜的二个光学面反射的绿十字叉丝像均位于分划板上方的十字刻度线的水平横线上,达到自准。此时三棱镜两个光学表面的法线均与分光计中心轴相垂直。
图9 三棱镜的调整
2.自准法测定三棱镜顶角
将三棱镜置于载物台中央,锁紧望远镜支架与刻度盘联结螺丝 22 及载物台锁紧螺丝 8 ,转动望远镜支架 15 ,或转动内游标盘 16 ,使望远镜对准 AB 面,在自准情况(绿十字叉丝像和分划板上方的十字刻度线完全重合)下,从两游标读出角度 和 ;同理转动望远镜对准 AC 面,自准时读角度 和 ,将结果填入表2中。由图9(b)中的光路和几何关系可知,三棱镜的顶角
(2)
【数据记录及处理】
表2 自准法(或反射法)测顶角数据表格
次数 游标1 游标2
篇6:实验二:碳钢和白口铁的显微组织观察实验报告
一、实验目的:
1.观察和分析铁碳合金的平衡组织; 2.分析铁碳合金显微组织的形成过程;
3.分析碳钢、白口铸铁的组织与含碳量之间的关系,从而掌握铁碳合金成分、组 织和性能之间的关系。
二、实验仪器和试件:
1. 碳钢(亚共析钢、共析钢、过共析钢试样)、球状珠光体的试样; 2. 白口铸铁(亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁试样); 3. XJX—1小型金相显微镜。
三、用铅笔描绘出用金相显微镜观察到的金相组织组织结构示意图,并用箭头指出其组成物的名称。
材料名称: 工业纯铁材料名称: 20#钢
组织结构: 铁素体 组织结构: 铁素体+珠光体放大倍数: 400 放大倍数: 400
材料名称:45#钢材料名称: T8钢 组织结构: 铁素体+珠光体组织结构:珠光体
放大倍数:400 放大倍数:400
材料名称: T12钢材料名称:共晶白口铸铁 组织结构:网状渗碳体+珠光体 组织结构: 莱氏体 放大倍数:400放大倍数: 400
材料名称: 亚共晶白口铸铁 材料名称: 过共晶白口铸铁 组织结构:珠光体+二次渗碳体+莱氏体
组织结构:一次渗碳体+莱氏
放大倍数:400 放大倍数: 400
四、问题与思考:
1. 非合金钢与白口铸铁在组织构成与力学性能方面有何异同?
答:非合金钢含碳量较低(0.02%—2.11%),织组构成只是铁素体,珠光体或珠光体与二次渗碳体的混合或铁素体与珠光体的混合。在力学性能方面,随着含碳量增加和硬度增加,非合金钢有较好的可塑性。
白口铸铁的含碳量高(2.11%—6.69%),织组构成是由莱氏体,珠光体和二次渗碳体与莱氏体混合成的莱氏体和一次渗碳体的混合等构成。在力学性能上,白口铸铁脆而硬,无延伸性。 2. 渗碳体有哪几种形态?如何分辨? 答:一次渗碳体、二次渗碳体和三次渗碳体。
一次渗碳体是从液相中直接析出的。
二次渗碳体是从奥氏体中析出的。 三次渗碳体是从铁素体中析出的。 3. 你对本次实验有何认识、意见和建议?
答:通过这次实验,我懂得了如何用金相显微镜观察金相组织组织。显微镜是精密仪器,考验了我们的操作能力和认真细致的态度。关于建议,我觉得老师可以在我们都观察玩各种结构图后为我们讲解一下我们看到的结构图,好让我们深入了解。
篇7:生物实验报告《观察植物细胞的质壁分离与复原》_实验报告_网
一、实验目的
1. 初步学会观察植物细胞质壁分离和复原的方法。
2. 理解植物细胞发生渗透作用的原理。
二、实验原理
当细胞液的浓度小于外界溶液的浓度时,细胞液中的水分就透过原生质层进入外界溶 液中,使细胞壁和原生质层都出现一定的收缩。由于原生质层比细胞壁的收缩性大,当细胞不断失水时,原生质层就会与细胞壁逐渐分离开,也就是分升了质壁分离当细胞液的浓度大于外界溶液的浓度时,外界溶液中的水分就透过原生质层进入细胞液中,整个原生质层就会慢慢地恢复成原来的状态,使植物细胞逐渐发生质壁分离复原。
三、材料用具
紫色洋葱鳞片叶、显微镜、载玻片、盖玻片、滴管、镊子、刀片、吸水纸、清水、0.3g/ml蔗糖溶液
四、实验过程(见书P60)
物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板
五、讨论
1.如果将洋葱表皮细胞浸润在与细胞液浓度相同的蔗糖溶液中,这些表皮细胞会出现什么现象?
2.当红细胞细胞膜两侧的溶液具有浓度差时,红细胞会不会发生质壁分离现象?为什么?
3.画一个细胞在正常状态下到经过0.3g/ml蔗糖溶液处理,再经过清水处理的细胞变化的一系列模式图。
篇8:物理仿真实验氢氘光谱拍摄实验报告范本_实验报告_网
一、实验目的
1.掌握氢氘光谱各谱线系的规律,即计算氢氘里德伯常数RH,RD的方法。
2.掌握获得和测量氢氘光谱的实验方法。
3.学习光栅摄谱仪的运行机理,并学会正确使用。
二、实验仪器及其使用方法
WPS-1自动控制箱,光源:铁电极。电弧发生器,光源:氢氘放电管。中间光阑,哈德曼光阑,摄谱窗口。
平面光栅摄谱仪是以平面衍射光栅作为色散元件的光谱仪器。它的光学系统用Ebert-Fastie装置(垂直对称式装置), 其光学系统如图2所示。由光源B(铁电极、氢氘放电管)发射的光,经过消色差的三透镜照明系统L均匀照明狭缝S, 再经反射镜P折向球面反射镜M下方的准光镜O1上,经O1反射,以平行光束射到光栅G上,经光栅衍射后, 不同方向的单色光束射到球面反射镜的中央窗口暗箱物镜O2处, 最后按波长排列聚焦于感光板F上,旋转光栅G,改变光栅的入射角,便可改变拍摄谱线的波段范围和光谱级次。 这种装置的入射狭缝S和光谱感光板是垂直平面内对称于光栅G放置的,由于光路结构的对称性, 彗差和像散可以矫正到理想的程度,使得在较长谱面范围内,谱线清晰、均匀。 同时由于使用球面镜M同时作为准直物镜和摄谱物镜,因此不产生色差,且谱面平直。 使用摄谱仪做光谱实验时必须注意以下事项:
(1)摄谱仪为精密仪器,使用时要注意爱护。尤其是狭缝,非经教师允许,不可以随意调节各旋钮,手柄均应轻调慢调,旋到头时不能再继续用力,不要触及仪器的各光学表面;
(2)燃电弧时,注意操作安全。电弧利用高频高压,点燃后不要用手触及仪器外壳;更换电极时要切断高压电,用绝缘性能好的钳子或手套来更换;电弧有强紫外线辐射,使用时要戴防护眼镜;
(3)铁弧电极上不能有氧化物,应经常磨光,呈圆锥形;调节两电极头之间的距离,注意电极头成像不要进入中间光阑。
三、实验原理
巴尔末总结出来的可见光区氢光谱的规律为:
(n = 3,4,5 ……)
式中的B=364.56nm。此规律可改写为:
式中的为波数,为氢的里德伯常数(109 678cm)。
根据玻尔理论或量子力学中的相关理论,可得出对氢及类氢离子的光谱规律为:
其中,和为整数,z为该元素的核电荷数,相应元素的里德伯常数为:
其中,m和e为电子的质量和电荷,c是真空中的光速,h为普朗克常数,M为原子核的质量。显然,随元素的不同R应略有不同,但当认为M→∞时,便可得到里德伯常量为:
这与玻尔原子理论(即电子绕不动的核运动)所推出的R值完全一样。现在公认的
的值为:10973731m,这与理论值完全符合。有了这样精密测定的里德伯常量,又可以反过来计算还没有测定的某些元素的里德伯常数。即:
比如应用到氢和氘为:
可见,氢和氘的里德伯常数是有差别的,其结果就是氘的谱线相对于氢的谱线会有微小的位移,叫同位素位移。和是能够直接精确测量的量,测出它们,也就可以计算出氢和氘的里德伯常数。同时还可以计算出氢和氘的原子核质量比。
式中是已知量。注意:波长应为真空中的波长,同一光波,在不同介质中波长是不同的,唯有频率及对应光子的能量是不变的,我们的测量往往是在空气中进行的,所以为精确得到结果时应将空气中的波长转换为真空中的波长。
四、测量内容及数据处理
测量内容
1.拍摄氢氘和铁的光谱。按实验要求,拟好摄谱程序表格,调好光路后,按程序用哈特曼光栏的相应光孔,分别拍下氢氘和铁的光谱。
2.显示谱片。取下底片盒,到暗室进行显影,定影、水洗等处理得到谱片。
3.观察和测量氢氘光谱线的波长。在光谱投影仪上观察谱片上的光谱,区分铁光谱和氢氘光谱,基于在很小的波长范围内可以认为线色散是个常数。如下图所示.用线性内插法就可以算出待测的谱线的波长。在映谱仪上用直尺进行粗测,在阿贝比长仪上进行精确测量计算出氢氘谱线的波长。
4.数据处理。计算出氢氘的里德伯常数,确定其不确定度,给出实验结果表达式。
篇9:淀粉酶活性测定实验报告
一、研究背景及目的
酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到
淀粉酶是水解淀粉的糖苷键的一类酶的总称,按照其水解淀粉的作用方式,可分为α-淀粉酶和β-淀粉酶等。α-淀粉酶和β-淀粉酶是其中最主要的两种,存在于禾谷类的种子中。β-淀粉酶存在于休眠的种子中,而α-淀粉酶是在种子萌发过程中形成的。
α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,α-淀粉酶活性低的品种抗穗发芽,反之则易穗发芽。目前,关于α-淀粉酶活性的测定方法很多种,活力单位的定义也各不相同,国内外测定α-淀粉酶活性的方法常用的有凝胶扩散法、3 ,5-二硝基水杨酸比色法和降落值法 。这3 种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的α-淀粉酶活性应该分别是延
二、实验原理
萌发的种子中存在两种淀粉酶,分别是α-淀粉酶和β-淀粉酶,β-淀粉酶不耐热,在高温下易钝化,而α-淀粉酶不耐酸,在pH3.6下则发生钝化。本实验的设计利用β-淀粉酶不耐热的特性,在高温下(70℃)下处理使得β-淀粉酶钝化而测定α-淀粉酶的酶活性。
酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定,由于麦芽糖能将后者还原生成硝基氨基水杨酸的显色基团,将其颜色的深浅与糖的含量成正比,故可求出麦芽糖的含量。常用单位时间内生成麦芽糖的毫克数表示淀粉酶活性的大小。然后利用同样的原理测得两种淀粉酶的总活性。实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。
在实验中要严格控制温度及时间,以减小误差。并且在酶的作用过程中,四支测定管及空白管不要混淆。
三、材料、试剂与仪器
实验材料:
萌发的小麦种子(芽长1厘米左右) 仪器:
722光栅分光光度计(编号990695)
DK-S24型电热恒温水浴锅(编号L-304056)离心机(TDL-40B)
容量瓶:50ml×1,100ml×1 小台秤 研钵
具塞刻度试管:15ml×6 试管:8支 移液器 烧杯 试剂:
① 1%淀粉溶液(称取1克可溶性淀粉,加入80ml蒸馏水,加热熔解,冷却后定容至100ml); ② pH5.6的柠檬缓冲液:
A液(称取柠檬酸20.01克,溶解后定容至1L) B液(称取柠檬酸钠29.41克,溶解后定容至1L)
取A液5.5ml、B液14.5ml混匀即为pH5.5柠檬酸缓冲液;
③ 3,5-二硝基水杨酸溶液(称取3,5-二硝基水杨酸1.00克,溶于20ml 1M氢氧化钠中,加入50ml蒸馏水,再加入30克酒石酸钠,待溶解后,用蒸馏水稀释至100ml,盖紧瓶盖保存);
④ 麦芽糖标准液(称取0.100克麦芽糖,溶于少量蒸馏水中,小心移入100ml容量瓶中定容);
⑤ 0.4M NaOH
四、实验步骤
1. 酶液的制备
称取2克萌发的小麦种子与研钵中,加少量石英砂,研磨至匀浆,转移到50ml容量瓶中用蒸馏水定容至刻度,混匀后在室温下放置,每隔数分钟振荡一次,提取15-20分钟,于3500转/分离心20分钟,取上清液备用。 2.α-淀粉酶活性的测定
① 取4支管,注明2支为对照管,另2支为测定管
② 于每管中各加酶提取液液1ml,在70℃恒温水浴中(水浴温度的变化不应超过±0.5℃)准确加热15min,在此期间β-淀粉酶钝化,取出后迅速在冰浴中彻底冷却。
③ 在试管中各加入1ml柠檬酸缓冲液
④ 向两支对照管中各加入4ml 0.4M NaOH,以钝化酶的活性
⑤ 将测定管和对照管置于40℃(±0.5℃)恒温水浴中准确保温15min再向各管分别加入40℃下预热的淀粉溶液2ml,摇匀,立即放入40℃水浴中准确保温5min后取出,向两支测定管分别迅速加入4ml 0.4M NaOH,以终止酶的活性,然后准备下步糖的测定。 3. 两种淀粉酶总活性的测定
取上述酶液5ml于100ml容量瓶中,用蒸馏水稀释至刻度(稀释倍数视样品酶活性大小而定,一般为20倍)。混合均匀后,取4支管,注明2支为对照管,另2支为测定管,各管加入1ml稀释后的酶液及pH5.6柠檬酸缓冲液1ml,以下步骤重复α-淀粉酶测定的第④及第⑤的操作。
4. 麦芽糖的测定 ⑴标准曲线的制作
取15ml具塞试管7支,编号,分别加入麦芽糖标准液(1mg/ml)0、0.1、0.3、0.5、0.7、0.9、1.0毫升,用蒸馏水补充至1.0ml,摇匀后再加入3,5-二硝基水杨酸1ml,摇匀,沸水浴中准确保温5min,取出冷却,用蒸馏水稀释至15ml,摇匀后用分光光度计于520nm波长下比色,记录消光值,以消光值为纵坐标,以麦芽糖含量为横坐标绘制标准曲线。 ⑵样品的测定
取15ml具塞试管8支,编号,分别加入步骤2和3中各管的溶液各1ml,再加入3,5-二硝基水杨酸1ml,摇匀,沸水浴中准确煮沸5min,取出冷却,用蒸馏水稀释至15ml,摇匀后用分光光度计于520nm波长下比色,记录消光值,根据标准曲线进行结果计算。
五、数据整理及计算
上表中前4行数据为实验的原始数据。以表中前两行数据绘制标准曲线(见下页),计算上表中第4行数据(各样品的OD值)均值,填入上第5行中,根据标准曲线的方程,计算第5行OD值所对应的麦芽糖浓度,填入最后一行,如上表。
根据以上的数据整理的结果,结合以下公式计算两种淀粉酶的活性:
淀粉酶活性(毫克麦芽糖克·1鲜重分钟·1)
(A-A)样品稀释总体积
样品重(g)5
(B-B)样品稀释总体积
淀粉酶活性(毫克麦芽糖克 1鲜重分钟1)
样品重(g)5
A——α-淀粉酶测定管中的麦芽糖浓度
A’——α-淀粉酶对照管中的淀粉酶的浓度
B——(α-+β-)淀粉酶总活性测定管中的麦芽糖浓度 B’——(α-+β-)淀粉酶总活性对照管中的麦芽糖浓度 计算结果如下:
α-淀粉酶活性(毫克麦芽糖克-1鲜重分钟-1)
(α-+β-)淀粉酶活性(毫克麦芽糖克-1鲜重分钟-1) β-淀粉酶活性-1鲜重分钟-1)
六、结果分析
七、思考题
1、酶活力测定实验的总体设计思路是什么?实验设计的关键你认为是什么?为什么? 答:利用酶的专一性或酶活力的影响因素抑制除待测酶以外的其它酶活性,通过测酶促反应的产率推算酶活力大小。
关键在于抑制其它酶的活力而不影响测定酶,这样可以减小或避免其它酶产物给测定结果带来的误差。
2、本实验最易产生对结果有较大误差影响的操作是哪些步骤?为什么?怎样的操作策略可以尽量减少误差?
答:①浸提步骤。70℃温度或15min时间控制不严格不准确则可能导致β淀粉酶未完全钝化使测得活性偏大。应严格控制温度和时间。②70℃水浴后需要立即冰浴,否则β淀粉酶复性使测得α淀粉酶活性结果偏大。③向测定管中加入NaOH时应迅速,否则酶与底物继续反应使结果偏大。
3、-淀粉酶活性测定时70℃水浴为何要严格保温15分钟?保温后为何要立即于冰浴中骤冷?
答:由于-淀粉酶不耐热,在70℃下处理一定时间可以钝化,严格保温15分钟可以达到理想的钝化效果,时间过长,-淀粉酶活性也会受到影响;时间不足,-淀粉酶钝化不完全。保温后立即骤冷是为了通过剧烈的温变改变-淀粉酶的结构以防止在随后的反应中复性,这样就保证了在随后的40℃温浴的酶促反应中-淀粉酶不会再参与催化反应。此外我认为冰浴使酶迅速降温,便于严格控制高温处理时间的长短。
4、pH5.6柠檬酸缓冲液的作用?各管于40℃水浴准确保温15分钟的作用?
答:酶实验体系的pH值变化或变化过大,会使酶活性下降甚至完全失活。加入pH5.6的缓冲液调至酶促反应的最适pH,同时稳定溶液的pH不至于在反应过程中大幅波动。 40℃水浴准确保温15分钟为调整酶促反应的最适温度
5、众多测定淀粉酶活力的实验设计中一般均采取钝化-淀粉酶的活力而测-淀粉酶和测总酶活力的策略,为何不采取钝化-淀粉酶活力去测-淀粉酶活力呢?这种设计思路说明什么?
答:β淀粉酶与α淀粉酶的催化特性是有差异的。β淀粉酶主要作用于直链淀粉的α-1,4-糖苷键,而且仅从淀粉分子外围的非还原性末端开始,切断至α-1,6-键的前面反应就停止了;而α淀粉酶则无差别地作用于直链淀粉与支链淀粉的α-1,4-糖苷键,所以β淀粉酶需要α淀粉酶淀粉支链的α-1,4-糖苷键后才能完全体现其催化能力。 此外我认为在实验中温度比酸度更易控制,钝化α淀粉酶难度远远高于β淀粉酶,而且若提高酸度钝化α淀粉酶,则回调最适pH时α淀粉酶也有可能由于复性恢复活力。
这种设计思路说明在测定酶的比活力时要综合考虑各种可能出现的酶的性质以及它们之间的联系,也要考虑到实验操作的可行性。
6、本实验中所设置的对照管的作用?它与比色法测定物质含量实验中设置的空白管有何异同?本实验可否用对照管调分光光度计的100%T?为什么?
答:消除非酶促反应(如淀粉酸性环境下加热水解)和非测定时间内的酶促反应引起的麦芽糖的生成带来的误差。
两种都是为了消除非测定部分对光的吸收,空白组是为了消除溶液中溶剂等其它组分对光的吸收,而对照管是为了消除非测量所需反应所得的多余溶质对光的吸收。
不可,因为标准曲线的确定是在空白的基础上的,得到的是OD值与麦芽糖含量的关系
7、我们所测定得到的总酶活力减去所测定得到的-淀粉酶活力是否就等于-淀粉酶活力?为什么?你的结论说明什么? 答:不等于。因为β淀粉酶和α淀粉酶作用于α-1,4糖苷键,但二者都不能水解支链的α-1,6-糖苷键,而我们所测定得到的总酶活力是二者在与R酶的共同作用下测得的酶活力,R酶能够降解支链淀粉,断裂α-1,6-糖苷键,从而增大了β淀粉酶和α淀粉酶可水解的底物浓度,使测得的总活力大于β淀粉酶和α淀粉酶单独作用的酶活力之和。 我的结论说明实验时要考虑各种酶协同作用的综合因素
八、参考文献
[1]生物化学实验指导中国农业大学生物化学实验室中国农业大学自编教材 [2]基础生物化学 赵武玲 中国农业大学出版社
篇10:物理实验报告《固体比表面的测定――BET法》_实验报告_网
一,实验目的:
1.学会用BET法测定活性碳的比表面的方法.
2.了解BET多分子层吸附理论的基本假设和BET法测定固体比表面积的基本原理
3. 掌握 BET法固体比表面的测定方法及掌握比表面测定仪的工作原理和相关测定软件的操作.
二,实验原理
气相色谱法是建立在BET多分子层吸附理论基础上的一种测定多孔物质比表面的方式,常用BET公式为:
)-1 + P (C-1)/ P0 VmC
上式表述恒温条件下,吸附量与吸附质相对压力之间的关系.
式中V是平衡压力为P时的吸附量,P0为实验温度时的气体饱和蒸汽压,Vm是第一层盖满时的吸附量,C为常数.因此式包含Vm和C两个常数,也称BET二常数方程.它将欲求量Vm与可测量的参数C,P联系起来.
上式是一个一般的直线方程,如果服从这一方程,
则以P/[V(P0-P)]对P/ P0作图应得一条直线,而由直线得斜率(C-1)/VmC和直线在纵轴上得截据1/VmC就可求得Vm.
则待测样品得比表面积为:
S= VmNAσA/ (22400m)
其中NA为阿伏加德罗常数;m为样品质量(单位:g); σm为每一个被吸附分子在吸附剂表面上所占有得面积,σm的值可以从在液态是的密堆积(每1分子有12个紧邻分子)计算得到.计算时假定在表面上被吸附的分子以六方密堆积的方式排列,对整个吸附层空间来说,其重复单位为正六面体,据此计算出常用的吸附质N2的σm=0.162nm2.
现在在液氮温度下测定氮气的吸附量的方法是最普遍的方法,国际公认的σm的值是0.162nm2.
本实验通过计算机控制色谱法测出待测样品所具有的表面积.
三,实验试剂和仪器
比表面测定仪,液氮,高纯氮,氢气.皂膜流量计,保温杯.
四:实验步骤
(一)准备工作
1,按逆时针方向将比表面测定仪面板上氮气稳压阀和氢气稳压阀旋至放松位置(此时气路处于关闭状态).
2,将氮气钢瓶上的减压阀按逆时针方向旋至放松位置(此时处于关闭状态),打开钢瓶主阀,然后按顺时针方向缓慢打开减压阀至减压表压力为0.2MPa,同法打开氢气钢瓶(注意钢瓶表头的正面不许站人,以免万一表盘冲出伤人).
3,按顺时针方向缓慢打开比表面仪面板上氮气稳压阀和氢气稳压阀至气体压力为0.1MPa.
4,将皂膜流量计与仪器面板上放空1口连接,将氮气阻力阀下方的1号拉杆拉出,测量氮气的流速,用氮气阻力阀调节氮气的流速为9ml/min,然后将1号拉杆推入.
5,将皂膜流量计与仪器面板上放空2口连接,将氢气阻力阀下方的2号拉杆拉出,测量氢气的流速,用氢气阻力阀调节氢气的流速为36ml/min,然后将2号拉杆推入.
6,打开比表面测定仪主机面板上的电源开关,调节电流调节旋钮至桥路电流为120mA,启电脑,双击桌面上Pioneer图标启动软件.观察基线.
(二)测量工作
1,将液氮从液氮钢瓶中到入保温杯中(液面距杯口约2cm,并严格注意安全),待样品管冷却后,用装有液氮的保温杯套上样品管,并将保温杯固定好.观察基线走势,当出现吸附峰,然后记录曲线返回基线后,击调零按钮和测量按钮,然后将保温杯从样品管上取下,观察脱附曲线.当桌面弹出报告时,选择与之比较的标准参数,然后记录(打印)结果(若不能自动弹出报告,则击手切按钮,在然后在谱图上选取积分区间,得到报告结果).重复该步骤平行测量三次,取平均值为样品的比表面积. 您正浏览的文章由第一'范文网www.diYifanwen.com整理,版权归原作者、原出处所有。
2.实验完成后,按顺序(1)关闭测量软件,(2)电脑,(3)将比表面仪面板上电流调节旋钮调节至电流为80mA后,关闭电源开关,(4)关闭氢气钢瓶和氮气钢瓶上的主阀门(注意勿将各减压阀和稳压阀关闭).(5)将插线板电源关闭.
操作注意事项
1.比表面测定仪主机板上的粗调,细调和调池旋钮已固定,不要再动;
2.打开钢瓶时,表头正面不要站人,以免气体将表盘冲出伤人;
3.使用液氮时要十分小心,不可剧烈震荡保温杯,也不要将保温杯盖子盖紧;
4.将保温杯放入样品管或者取下时动作要缓慢,以免温度变化太快使样品管炸裂;
5.关闭钢瓶主阀时,不可将各减压阀关闭;
五:数据记录及处理:
样品序号
重量(mg)
表面积(m2/g)
峰面积(m2/g)
标准样品
70
200
1660630
样品1
70
199.241
1626622
样品2
70
198.646
1621763
样品均值
70
198.944
1624192.5
样品表面积的平均值为(199.241+198.646)/2= 198.944m2/g
相对误差为: (198.944-200.00)/200.00=-0.0078)
六,误差分析
(1)调零时出现问题,出峰时,基线没有从零开始,然后处理不当;
(2)取出装有液氮的保温杯时,基线还未开始扫描.
(3)脱附时温度较低,出现拖尾.通常认为滞后现象是由多孔结构造成,而且大多数情况下脱附的热力学平衡更完全.
七,注意事项
1,打开钢瓶时钢瓶表头的正面不许站人,以免表盘冲出伤人;
2,液氮时要十分小心,切不可剧烈震荡保温杯也不可将保温杯盖子盖紧;
2,注意开关阀门,旋纽的转动方向;
3,钢瓶主阀时,注意勿将各减压阀和稳压阀关闭;
4,测量时注意计算机操作:在吸附时不点测量按纽,当吸附完毕拿下液氮准备脱附时再点调零,测量,进入测量吸附量的阶段;
5,严格按照顺序关闭仪器.
6,BET公式只适用于比压约在所不惜.0.05-0.35之间,这是因为在推导公式时,假定是多层的物理吸附,当比压小于0.05时,压力太小,建立不起多层物理吸附,甚至连单分子层吸附也未形成,表面的不均匀性就显得突出;在比压大于0.35时,由于毛细凝聚变得显著起来,因而破坏了多层物理吸附平衡.
篇11:深圳大学物理化学实验报告燃烧热的测定谢佳澎 苏竹_实验报告_网
深圳大学物理化学实验报告
实验者: 谢佳澎 苏竹 实验时间: 2000/3/5
气温: 24.5 ℃ 大气压: 101.47 kpa
燃烧热的测定
目的要求 一,用氧弹热量计测定萘的燃烧热
二,明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别
三,了解热量计中主要部分的作用,掌握氧弹热量计的实验技术
四,学会雷诺图解法校正温度改变值
仪器与试剂 氧弹卡计 贝克曼温度计 普通温度计 压片器 分析天平 台秤 万用电表 点火丝 剪刀 直尺镊子 扳手 苯甲酸 柴油 氧气钢瓶 氧气减压阀
实验数据及其处理 贝克曼温度计读数
苯甲酸
柴油
苯甲酸
柴油
样品质量 g
序号
初段
末段
初段
末段
w2
w2
1
2.157
3.458
1.528
3.440
2.2500
39.1769
2
2.162
3.461
1.533
3.480
w1
w1
3
2.169
3.464
1.538
3.520
1.5718
38.5392
4
2.175
3.467
1.541
3.550
样重
样重
5
2.180
3.469
1.542
3.558
0.6782
0.6377
6
2.185
3.470
1.544
3.561
点火丝
7
2.190
3.471
1.546
3.568
l2
l2
8
2.194
3.472
1.547
3.570
20
20
9
2.198
3.473
1.549
3.575
l1
l1
10
2.203
3.475
1.550
3.572
16
5.8
消耗
消耗
4
14.2
初段斜率
初段截距
初段斜率
初段截距
0.0051
2.153
0.0023
1.529
末段斜率
末段截距
末段斜率
末段截距
0.0018
3.458
0.0131
3.467
升温中点
12
升温中点
12.5
中点低温
中点高温
中点低温
中点高温
2.215
3.480
1.558
3.625
温升
1.265
温升
2.066
水值j/℃
14191
热值 j/g
45920
4 实验讨论 固体样品为什么要压成片状? 答:压成片状易于燃烧,和氧气充分接触,且易于称中。
2. 在量热学测定中,还有哪些情况可能需要用到雷诺温度校正方法?
答:实验中要用到温度差校正的都可以用。
3. 如何用萘的燃烧数据来计算萘的标准生成热?
答:代入公式计算。
篇12:实验报告液体的饱和蒸汽压的测定史炜 汤菲菲_实验报告_网
实验三 液体的饱和蒸汽压的测定
实验者:史炜 汤菲菲 实验时间:2000.4.19
气 温:24.0℃ 大气压:101.7kpa
目的要求 明确纯液体饱和蒸气压的定义和气液两相平衡的概念,深入了解纯液体饱和蒸气压和温度的关系棗克劳修斯-克拉贝龙方程式。 用等压计测定不同温度下苯的饱和蒸气压。初步掌握真空实验技术。 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸点。 仪器与试剂
蒸气压力测定仪、旋片式真空泵、精密温度计、玻璃恒温水浴
一套、苯
实验步骤
准备工作。接通冷却水。认识系统中各旋塞的作用。开启进 气旋塞使系统与大气相通。 读取大气压力p0。以后每半小时读一次。 系统检漏。开启真空泵,2分钟后开启抽气旋塞,关闭进气旋塞,使系统减压至汞柱差约为500毫米,关闭抽气旋塞。系统若在5分钟之内汞柱差不变,则说明系统不漏气。 插上加热器、控制器、搅拌器的电源,开动搅拌器,打开控制器电源开关,调节温度控制旋钮至52℃ ,使水浴升温。 水浴温度升至52℃后,精确读取水浴温度。缓慢旋转进气旋塞,使平衡管中bc二液面等高,读取u形压差计左右两汞柱的高度。 分别测定52、56、60、65、70、73、76℃液体的饱和蒸汽压。 系统通大气,测定液体在当地大气压下的沸点。 实验完毕, 断开电源、水源。 数据记录
室温: 24.0 ℃
大气压p0: 101.7 、101.7 kpa
序号
1
2
3
4
5
6
7
h左mmhg
618.0
596.5
569.0
535.0
496.0
467.5
434.5
h右mmhg
185.0
199.0
239.0
276.5
319.5
350.0
387.0
t水浴℃
51.80
56.00
59.80
64.60
69.70
72.30
75.95
数据处理
h左(mmhg)
h右(mmhg)
δh(mmhg)
δh(pa)
p*(pa)
lnp*
t水浴 (℃)
1/t
1
618.0
185.0
433.0
57728.6
43971.4
10.6913
51.80
0.019305
2
596.5
199.0
397.5
52995.6
48704.4
10.79352
56.00
0.017857
3
569.0
239.0
330.0
43996.4
57703.6
10.96308
59.80
0.016722
4
535.0
276.5
258.5
34463.8
67236.2
11.11597
64.60
0.015480
5
496.0
319.5
176.5
23531.4
78168.6
11.26662
69.70
0.014347
6
467.5
350.0
117.5
15665.4
86034.6
11.36251
72.30
0.013831
7
434.5
387.0
47.5
6332.8
95367.2
11.46549
75.95
0.013167
p*-t图
lnp*–(1/t)图
趋势图
上图,黄线为lnp*–(1/t)曲线的趋势线,是一条直线,其方程为
lnp*=?/font>128.83(1/t)+13.132
由上图得:斜率k=?/font>128.83
所以 δvhm= –k*r=128.83*8.314=1071j/mol=1.07kj/mol
当p*等于一个标准大气压,即p*=101325pa时,苯的正常沸点为
t=128.83/(13.132–ln101325)=80.2℃
而苯的沸点的文献值为80.1℃
实验时大气压为101.7kpa,苯的沸点为
t=128.83/(13.132–ln101700)=80.4℃
而实验测得的沸点为80.50℃。
实验思考题
一、压力和温度的测量都有随机误差,试导出δvhm的误差传递表达式。
答:p*=p大气–(p左–p右)
因为lnp*=(–δvhm)/rt+c (c为积分常数)
所以δvhm=rt*(c–lnp*)
ln(δvhm)=lnr+lnt+ln(c–lnp*)
d ln(δvhm)=dlnt+dln(c–lnp*)
d(δvhm)/ δvhm=dt/t+d(c–lnp*)/ (c–lnp*)
所以误差传递公式为
δ(δvhm)/ δvhm=δt/t+δ(c–lnp*)/(c–lnp*)
二、用此装置,可以很方便地研究各种液体,如苯、二氯乙烯、四氯化碳、水、正丙醇、丙酮和乙醇等,这些液体中很多是易燃的,在加热时应该注意什么问题?
答:应注意远离火源,加热时温度不能过高,测蒸气压时压力不能过低等。
篇13:分子荧光光谱法实验报告范文_实验报告_网
一、 实验目的
1.掌握荧光光度计的基本原理及使用。
2.了解荧光分光光度计的构造和各组成部分的作用。
3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。
4.了解影响荧光产生的几个主要因素。
5.学会运用分子荧光光谱法对物质进行定性和定量分析。
二、 实验原理
原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。
具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。
(1)激发光谱
是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。
激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。
(2)发射光谱
是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。
发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。 发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。
(3)荧光强度与荧光物质浓度的关系
用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A
三、 实验试剂和仪器
试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙
醇。
仪器:Fluoromax-4荧光分光光度计;1cm比色皿;spectrofluorometer分析软件。
荧光分析仪器结构:它主要由光源、单色器、液槽、检测器和显示器组成。光源发出的紫外-可见或者红外光经过激发单色器分光后,照到荧光池中的被检测样品上,样品收到该激发光照射后,发出的荧光经发射单色器分光,由光电倍增管转换成相应电信号,再经放大器放大反馈进入转换单元,将模拟电信号转换成相应数字信号,并通过显示器或打印机显示和记录被测样品谱图。
四、 实验步骤
1.样品制备。配置不同浓度的3,3’-Diethyloxadicarbocyanine iodide溶液,分别为10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度。
2.打开荧光分光光度计和电脑,预热半个小时。
3.打开spectrofluorometer分析软件,进行相关参数的设置。首先检测罗丹明B的激发光谱,此时固定发射波长为560nm,检测并保存激发光谱。然后根据所检测的激发光谱中的最大峰值541nm来设置检测罗丹明B的荧光光谱的激发波长,检测并保存所得的荧光光谱。
4.检测1-萘酚的荧光光谱。方法同步骤3。
5.用已配置好的3,3’-Diethyloxadicarbocyanine iodide标准溶液进行与2中相同的步骤,找到最大激发波长与最大发射波长,之后选定单点检测模式,并设置成刚选择的最大激发波长与最大发射波长,分别对10μg/ml, 20μg/ml,30μg/ml,40μg/ml进行检测,记录数据,绘制工作曲线。
6.对未知浓度3,3’-Diethyloxadicarbocyanine iodide进行检测,记录数据,并根据工作曲线求出浓度。
五、 数据记录和处理
1. 数据记录
(1)罗丹明B的测定
图2.罗丹明B的激发光谱
图3.罗丹明B的荧光光谱
篇14:植物组织水势的测定实验报告_实验报告_网
一、实验目的和要求
了解植物组织中水分状况的另一种表示方法及用于测定的方法和它们的优缺点。
二、实验原理
小液流法测定新鲜白萝卜的组织水势。植物细胞是一个渗透系统。当组织水势低于溶液渗透势,组织吸水,溶液变浓,比重增加,小液流下沉。当组织水势高于溶液渗透势,组织失水,溶液变稀,比重下降,小液流上浮。当组织水势等于溶液渗透势,组织与溶液达到水分进出动态平衡,溶液浓度和比重不变,小液流不动。
压力室法测定海桐叶片组织水势,植物叶片通过蒸腾作用产生蒸腾拉力。导管中的水分由于内聚力的作用而形成连续的水柱。因此,对于蒸腾着的植物,其导管中的水柱由于蒸腾拉力的作用,使水分连贯地向上运输。当叶片或枝条被切断时,木质部中的液流由于张力解除迅速缩回木质部。将叶片装入压力室钢筒,切口朝外,逐渐加压,直到导管中的液流恰好在切口处显露时,所施加的压力正好抵偿了完整植株导管中的原始负压。
三、主要仪器设备
小液流法:白萝卜、打孔器、10ml离心管、小刀、镊子、注射器、1mol/L蔗糖溶液、甲基橙 压力室法:压力室
四、操作方法和实验步骤
小液流法:
1、用1mol/l的蔗糖溶液配制0.05、0.10、0.20、0.30、0.40、0.50M一系列不同浓度的蔗糖溶液(10mL),用力混匀。
2、分别取4ml不同浓度的溶液到另一组相应的试管中。每管加入厚度约为1mm的萝卜圆片,加塞放置30min。期间晃动(3-4次)。
3、用针蘸取少量甲基橙放入每支试管,混匀。
4、用注射器取少许黄色溶液,伸入对应浓度的蔗糖溶液中部,缓慢挤出一滴小液滴,观察小液滴移动方向并记录。
Ψw(Mpa) = -iCRT = -0.0083×(273+toC) ×浓度
压力室法:
根据植物材料选取枝条(或叶片)型的压力室盖→将试样装入压力室盖的孔(或槽)中夹紧,压入压力室并顺时针旋转紧固。打开钢瓶阀门,使控制阀朝向加压,缓慢打开测定阀,使加压速率达0.1bar,仔细观察伸出压力室盖的植物样品,一发现木质部转湿润液体溢出,立即关闭测定阀,记录压力表读数。
组织Ψw(Mpa) = -0.1×压力室压力表读数
五、实验数据记录和处理
小液流法测定结果:
其他两个小组的实验结果:
根据公式计算得到萝卜组织液浓度
Ψw(Mpa) = -iCRT = -0.0083×(273+t℃) ×浓度= -0.0083×(273+16 ) ×0.1=-0.240Mpa
萝卜组织液浓度约为0.1mol/L,水势约为-0.240Mpa
压力室法测定结果:
室温16℃,测出出水压力读数为13,水势 -1.3Mpa
六、实验结果与分析
1、比较多组的实验结果发现,各组实验数据差别较大,经分析认为通过小液流法测量的水势误差较大。
2、经分析认为萝卜切片厚薄和总质量不同、在空气中放置的时间不同、萝卜片在溶液中的放置时间不同,均有可能造成小液流法实验数据的偏差。
3、通过小液流法测得的植物组织水势只是一个范围,如要得到更精确的实验结果,需要缩小梯度之间的浓度差,在0.5mol/L~0.2 mol/L之间设多个测量点。
七、讨论、心得
1、因为小液流法的人为因素误差较大,所以萝卜切片须尽量使大小厚薄均匀,切好后尽快同时放入到六个试管中,以减少人为误差。
2、由于萝卜和外界溶液渗透达到平衡需要一定的时间,所以将萝卜放入溶液后等待的时间不能过短,否则会引起实验误差,将萝卜切成薄片也是为了加快渗透作用。
3、使用注射器向原荣业中加入黄色的渗透平衡溶液时,应缓慢加入少量即可,如加入太快,会黄色溶液从针头向下喷出,会对液流运动方向的观察造成影响。
4、用压力室法测定植物的水势,可以直接从压力表上读出水势的数值,实验结果直观,但是也存在一些缺点,判断水刚从切面渗出难度较大,同时该实验方法仪器要求较高,且测量值受到环境气压的影响。
篇15:初中物理观察凸透镜成像的实验报告_实验报告_网
一、提出问题:平面镜成的是实像还是虚像?是放大的还是缩小的像?所成的像的位置是在什么地方?
二、猜想与假设:平面镜成的是虚像。像的大小与物的大小相等。像与物分别是在平面镜的两侧。
三、制定计划与设计方案:实验原理是光的反射规律。
所需器材:蜡烛(两只),平面镜(能透光的),刻度尺,白纸,火柴,
实验步骤:
1.在桌面上平铺一张16开的白纸,在白纸的中线上用铅笔画上一条直线,把平面镜垂直立在这条直线上。
2.在平面镜的一侧点燃蜡烛,从这一侧可以看到平面镜中所成的点燃蜡烛的像,用不透光的纸遮挡平面镜的背面,发现像仍然存在,说明光线并没有透过平面镜,因而证明平面镜背后所成的像并不是实际光线的会聚,是虚像。
3.拿下遮光纸,在平面镜的背后放上一只未点燃的蜡烛,当所放蜡烛大小高度与点燃蜡烛的高度相等时,可以看到背后未点燃蜡烛也好像被点燃了。说明背后所成像的大小与物体的大小相等。
4.用铅笔分别记下点燃蜡烛与未点燃蜡烛的位置,移开平面镜和蜡烛,用刻度尺分别量出白纸上所作的记号,量出点燃蜡烛到平面镜的距离和未点燃蜡烛(即像)到平面镜的距离。比较两个距离的大小。发现是相等的。
四、自我评估:该实验过程是合理的,所得结论也是正确无误。做该实验时最好是在暗室进行,现象更加明显。误差方面应该是没有什么误差,关键在于实验者要认真仔细的操作,使用刻度尺时要认真测量。
五、交流与应用:通过该实验我们已经得到的结论是,物体在平面镜中所成的像是虚像,像的大小与物体的大小相等,像到平面镜的距离与物体到平面镜的距离相等。像与物体的连线被平面镜垂直且平分。例如,我们站在穿衣镜前时,我们看穿衣镜中自己的像是虚像,像到镜面的距离与人到镜面的距离是相等的,当我们人向平面镜走近时,会看到镜中的像也在向我们走近。我们还可以解释为什么看到水中的物像是倒影。平静的水面其实也是平面镜,等等。
篇16:大学物理重力加速度的测定实验报告范文_实验报告_网
一、实验任务
精确测定银川地区的重力加速度
二、实验要求
测量结果的相对不确定度不超过5%
三、物理模型的建立及比较
初步确定有以下六种模型方案:
方法一、用打点计时器测量
所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.
利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.
方法二、用滴水法测重力加速度
调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.
方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面
重力加速度的计算公式推导如下:
取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:
ncosα-mg=0 (1)
nsinα=mω2x (2)
两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,
∴y/x=ω2x/2g. ∴ g=ω2x2/2y.
.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.
方法四、光电控制计时法
调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.
方法五、用圆锥摆测量
所用仪器为:米尺、秒表、单摆.
使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t
摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:
g=4π2n2h/t2.
将所测的n、t、h代入即可求得g值.
方法六、单摆法测量重力加速度
在摆角很小时,摆动周期为:
则
通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
四、采用模型六利用单摆法测量重力加速度
摘要:
重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。
伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。
应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。
实验器材:
单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线
实验原理:
单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。
f =p sinθ
t=p cosθ
p = mg
l
图2-1 单摆原理图
摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。当摆角很小时(θ
sinθ=
f=psinθ=-mg =-m x (2-1)
由f=ma,可知a=- x
式中负号表示f与位移x方向相反。
单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= =-ω2x
可得ω=
于是得单摆运动周期为:
t=2π/ω=2π (2-2)
t2= l (2-3)
或 g=4π2 (2-4)
利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。
由式(2-3)可知,t2和l之间具有线性关系, 为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。
试验条件及误差分析:
上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:
1. 单摆的摆动周期与摆角的关系,可通过测量θ
实际上,单摆的周期t随摆角θ增加而增加。根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:
t=t0[1+( )2sin2 +( )2sin2 +……]
式中t0为θ接近于0o时的周期,即t0=2π
2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:
3.如果考虑空气的浮力,则周期应为:
式中t0是同一单摆在真空中的摆动周期,ρ空气是空气的密度,ρ摆锥 是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。
4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。
上述四种因素带来的误差都是系统误差,均来自理论公式所要求的条件在实验中未能很好地满足,因此属于理论方法误差。
篇17:食品中总酸度的测定实验报告
1. 方法提要
总酸度是食品中所有酸性物质的总量,包括已离解的酸和未离解的酸,常采用酸碱滴定法进行测定,即用标准碱溶液进行滴定,以酚酞为指示剂来判断终点,并以样品中主要代表酸的百分含量表示。
样品中若颜色较深,不易观察终点时,常采用自动电位滴定仪进行测定,本实验终点PH控制在8.2。
2. 要求
1) 要求学会酸碱滴定法测定食品中的总酸度;
2) 要求掌握酸碱电位滴定仪的调节和使用。
3. 仪器、设备
1) ZD—2型自动电位滴定仪一套。
4. 试剂
1) 1000mol/L的氢氧化钠标准溶液;
2) PH9.18的缓冲溶液;
3) PH6.88的缓冲溶液。
5. 实验步骤
1) 按说明书接好电源及连线,打开电源开关;
2) 定位调节:将PH旋钮指向测量挡,温度补偿旋钮指向所测溶液的温度,将PH复合电极插入PH6.88的缓冲溶液中,打开磁力搅拌器开关,缓慢旋转定位旋钮,使其PH到达所对应温度的PH值,固定好定位旋钮不动。
3) 斜率校正:定位调节好后,将PH复合电极插入PH9.18的缓冲溶液中,打开磁力搅拌器开关,缓慢旋转斜率旋钮,使其PH到达所对应温度的PH值,固定好斜率旋钮不动。
4) 零位调节:按定量分析实验要求,在滴定管中装入标准氢氧化钠溶液,将“一般、自动、手动”调节旋钮指向“手动”位,不断的按启动按钮,排除橡皮管中的气泡,并使滴定管中的液位到达零位。
5) 样品测定:准确吸取处理好的样品溶液50 ml于100ml烧杯中,按下PH终点调节按钮,旋转PH终点调节旋钮,将终点设定在PH8.20。将电极插入溶液中,打开搅拌器开关,调节合适的搅拌速度,将PH旋钮指向滴定挡,将“一般、自动、手动”调节旋钮指向“一般”位,按下启动按钮开始滴定,到达终点后电磁阀会自动关闭,此时读出所用氢氧化钠的体积(ml)数。要求做两次平行试验,误差不大于0.05%
6) 实验结束后,关闭电源,清洗电极,并将复合电极插入氯化钾饱和溶液中。(每次使用前先用蒸馏水清洗浸泡)
6. 计算
XMVK100% V样式中:
X:样品的总酸度;
M:氢氧化钠标准溶液的摩尔浓度(mol/L);
V:氢氧化钠标准溶液的用量(ml);
V样:吸取样品溶液的体积(ml);
K:适当的换算系数(以该样品中主要酸的毫克当量数计)。苹果酸0.067;柠檬酸0.064;酒石酸0.075;乳酸0.090;醋酸0.060。
7. 注意事项
1) 对于酸度较高液体样品可取10 ml移入250ml容量瓶中定容至刻度,吸取50ml滤液再按上法进行测定;对于固体而言,应准确称取均匀样品10~20g于小烧杯中,用水移入250ml容量瓶中充分振摇后加水至刻度,摇匀,用干燥滤纸过滤,吸取50ml滤液再按上法进行测定。
2) 对于样品的取样量的多少,一般以滴定液的用量在10~20 ml为原则,滴定量太少,误差较大,滴定量太多,测定时间又较长。
3) 由于滴定管的刻度存在系统误差,滴定管直径不一定完全相同,所以每次测定样品都要将滴定液调至零位。
篇18:常用金属材料显微组织观察实验报告
一、实验目的
2.分析这些金属材料的组织和性能的关系及应用。
二、金属材料的显微组织观察及分析
1.几种常用合金钢的显微组织
合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。
1)一般合金结构钢、合金工具钢都是低合金钢。由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。40Cr钢经调质处理后的显微组织是回火索氏体。GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。
图1、16Mn-淬火-x400
16Mn钢属于碳锰钢,碳的含量在0.16%左右。16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。加入合金元素锰,使C曲线右移,在淬火处理后,组织为马氏体组织。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。
图2、16Mn-正火-x400
16Mn属于低碳钢,碳含量
16
Mn钢是目前我国应用最广的低合金钢。广泛应用于各种板材、钢管。
图3、65Mn-等温淬火-400
65Mn,锰提高淬透性,但Mn含量过大会导致过热现象。
特性:经热处理后的综合力学性能优于碳钢,65Mn 钢板强度、硬度、弹性和淬透性均比65号钢高。但有过热敏感性和回火脆性。
1
应用:用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧。
图4、等温淬火-30CrMnSi-x400
30CrMnSi是高强度调质结构钢。组织形貌,保持马氏体位向的回火索氏体,并出现极少量的铁素体。
特性:具有很高的强度和韧性,淬透性较高,冷变形塑性中等,切削加工性能良好。有回火脆性倾向,横向的冲击韧性差。焊接性能较好,但厚度大于3mm时,应先预热到150℃,焊后需热处理。一般调质后使用。
用途:多用于制造高负荷、高速的各种重要零件,如齿轮、轴、离合器、链轮、砂轮轴、轴套、螺栓、螺母等,也用于制造耐磨、工作温度不高的零件,变载荷的焊接构件,如高压鼓风机的叶片、阀板以及非腐蚀性管道管子
图5、GCr15-x400
2
GCr15是滚动轴承钢,是一种常用的高铬轴承钢,具有高的淬透性,热处理后可获得高而均匀的硬度。GCr15经淬火回火处理后,组织为马氏体+残余奥氏体+碳化物。
特性:综合性能良好.球化退火后有良好的切削加工性能.淬火和回火后硬度高而且均匀,耐磨性能和接触疲。劳强度高,热加工性能好。含有较多的合金元素,价格比较便宜。但是白点敏感性强,焊接性能较差。
用途:用于制作各种轴承套圈和滚动体。例如:制作内燃机、电动机车、通用机械,以及高速旋转的个高载荷机械传动轴承的钢球、滚子和套圈。除做滚珠、轴承套圈等外,有时也用来制造工具,如冲模、量具。
图6、Cr15-上贝+M-x400
性能:冷变形塑形高,焊接性良好,在退火状态下可切削性甚好
应用:这种钢主要用来制造工作速度较高而断面不大(≤30mm),但心部要求较高强度及韧性而表面耐磨的渗碳零件,如齿轮、凸轮、滑阀、活塞、衬套、曲柄销、活塞销、活塞环、联轴节、轴、轴承圈等。此外,这种钢也可以用作低碳马氏体淬火钢,用来制造对变形要求不严、但要求强度、韧性的零件。
图7、铸态-2GMn13-x400
高锰钢(high manganese steel)是指含锰量在10%以上的合金钢。
性能:高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。
用途:高锰钢是专为重工业提供使用的一种防磨钢材,应用领域包括采石、采矿、挖掘、煤炭工业、铸造和钢铁行业等。
图8、水韧处理-2GMn13-x400
水韧处理:碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。
用途:水韧处理后,碳化物减少,高锰钢是专为重工业提供使用的一种防磨钢材, 应用领域包括采石、采矿、挖掘、煤炭工业、铸造和钢铁行业等。
篇19:关于旋光法测定蔗糖转化反应的实验报告_实验报告_网
篇一:旋光法测定蔗糖转化反应的速率常数实验报告
旋光法测定蔗糖转化反应的速率常数实验报告
一、实验名称:旋光法测定蔗糖转化反应的速率常数 二、实验目的
1、了解旋光仪的基本原理,掌握旋光仪的正确使用方法; 2、了解反应的反应物浓度与旋光度之间的关系; 3、测定蔗糖转化反应的速率常数。
三、实验原理
蔗糖在水中水解成葡萄糖的反应为:
C12H22O11+H20→ C6H12O6+C6H12O6
蔗糖 葡萄糖果糖
为使水解反应加速,反应常以H3O+为催化剂,故在酸性介质中进行水解反应中。在水大量存在的条件下,反应达终点时,虽有部分水分子参加反应,但与溶质浓度相比认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为:
lnC=-kt+lnC0(1)
式中:C0为反应开始时蔗糖的浓度;C为t时间时的蔗糖的浓度。 当C=0.5C0时,t可用t1/2表示,即为反应的半衰期。
t1/2=ln2/k
上式说明一级反应的半衰期只决定于反应速率常数k,而与起始无关,这是一级反应的一个特点。
本实验利用该反应不同物质蔗比旋光度不同,通过跟踪体系旋光度变化来指示lnC与t的关系。在蔗糖水解反应中设β1、β2、β3分别为蔗糖、葡萄糖和果糖的旋光度与浓度的比例常数
C12H22O11(蔗糖)+H20→ C6H12O6 (葡萄糖)+C6H12O6 (果糖)
t=0C0β1 0 0 α= C0β1
t=t Cβ1 ( C -C0)β2 ( C -C0)β3αt=Cβ1+( C -C0)β2+ ( C -C0)β3
t=∞0β2C0 β2C0 α∞=β2C0+β2C0 由以上三式得:
ln(αt-α∞)=-kt+ln(α0-α∞)
由上式可以看出,以ln(αt-α∞) 对t 作图可得一直线,由直线斜率即可求得反应速度常数k 。 四、实验数据及处理:
1. 蔗糖浓度:0.3817 mol/L HCl浓度:2mol/L 2. 完成下表:=-1.913
表1 蔗糖转化反应旋光度的测定结果
五、作lnt~ t图,求出反应速率常数k及半衰期t1/2 求算过程:
由计算机作图可得斜率=-0.02 既测得反应速率常数k=0.02
t1/2 =ln2/k=34.66min 六、讨论思考:
1.在测量蔗糖转化速率常数的,选用长的旋光管好?还是短的旋光管好?答:选用较长的旋光管好。根据公式〔α〕=α×1000/Lc,在其它条件不变情况下,L越长,α越大,则α的相对测量误差越小。
2.如何根据蔗糖、葡萄糖和果糟的比旋光度计算α0和α∞答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100
α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100
式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为
旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。
设t=20℃ L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32°
α∞=骸2×10/100×(52.2-91.9)=-3.94°
3.在旋光度的测量中,为什么要对零点进行校正可否用蒸馏水来进行 校正在本实验中若不进行校正,对结果是否有影响
答:若需要精确测量α的绝对值,则需要对仪器零点进行校正,因为仪器本身有一系统误差;水本身没有旋光性,故可用来校正仪器零
点。本实验测定k不需要对α进行零点校正,因为αt,α∞是在同一台仪器上测量,而结果是以ln(αt-α∞)对t作图求得的。
4.记录反应开始的时间晚了一些,是否影响k值的测定为什么答:不会影响;因为蔗糖转化反应对蔗糖为一级反应,本实验是 以ln(αt-α∞)对t作图求k,不需要α0的数值。
5.如何判断某一旋光物质是左旋还是右旋
答:根据公式[α]t℃D=α×100/Lc,在其它条件不变的情况下,α与浓度成正比。配制若干不同浓度的溶液,测定其旋光度。即可判断。
6.配制蔗糖溶液时称量不够准确或实验所用蔗糖不纯对实验有什么影响答:此反应对蔗糖为一级反应,利用实验数据求k时不需要知道蔗糖的初始浓度。所以配溶液时可用粗天平称量。若蔗糖中的不纯物对 反应本身无影影响,则对实验结果也无影响。