0

实验报告汇总(优秀20篇)

浏览

7500

范文

748

水污染综合实验报告_实验报告_网

范文类型:汇报报告,全文共 4321 字

+ 加入清单

水污染综合实验报告

一、实验目的与要求

1. 掌握测试不同废水的色度、浊度、COD、电导、pH等水质指标的分析方法。

2. 增强对污染物综合分析能力。

3.根据废水水质选择所用的混凝剂、吸附剂类型;根据实验结果计算出所选混凝剂、吸附剂对废水的去除效率。

4.对废水的进一步治理提出可行性治理方案。

二、实验内容

1.根据高锰酸钾法测定废水的COD,利用pH酸度计,光电浊度计,色带,色度计分别测定pH值、浊度、色度,并预习实验内容,进行实验准备。

2.按照自己所取锅炉排污水、洗衣废水或其他废水的水质特点,自己设计实验方案。

3.针对某一废水,实验比较后确定自己认为合适的处理流程。 确定每种处理流程最佳投药量、pH值、搅拌速度及其他操作条件。给出治理结果。

4.处理结果达不到排放标准或回用标准的提出进一步治理方案。

三、实验原理

由于胶粒带电,将极性水分子吸引到它的周围形成一层水化膜,水化膜同样能阻止胶粒间相互接触。因此胶体微粒不能相互聚结而长期保持稳定的分散状态。投加混凝剂能提供大量的正离子,可以压缩双电层,降低ζ电位,静电斥力减少,水化作用减弱;混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒之间起吸附架桥作用,也有沉淀网捕作用。这样投加了混凝剂之后,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体后沉淀。

活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就是其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。活性炭的吸附是上述两种吸附综合作用的结果。

离子交换或臭氧氧化属于深度净化,可以有效降低废水中的含盐量、COD、色度等。 强酸H交换器失效后,必须用强酸进行再生,可以用HCl,也可以用H2SO4。相对来说,由于HCl再生时不会有沉淀物析出,所以操作比较简单。再生浓度一般为2%~4%,再生流速一般为5m/h左右。强碱OH交换树脂再生液浓度一般为1%~3%,流速≤5m/h。GB12145—1999水汽质量标准规定一级复床出水水质为:电导率≤5?S/cm。混床出水残留的含盐量在1.0mg/L以下,电导率在0.2S/cm以下,残留的SiO2在20?g/L以下,pH值接近中性。

四、实验仪器,设备及试剂

六联搅拌器,pH酸度计,光电浊度计,温度计1支,色度计 1000ml烧杯6个,1000ml量筒1个 1ml、2ml、5ml、10ml移液管各一支 200ml烧杯一个,吸耳球、FeCl3、 Al2(SO4)3、FeSO4、 NaSiO3 10%的NAOH溶液和10%HCl溶液500ml各1瓶 振荡器,离子交换拄,臭氧发生器,水浴锅,活性炭 电厂污水或工业废水水样

五、实验装置及方法

1)高锰酸钾法测定废水COD

1、实验原理

高锰酸钾指数是指在一定条件下,以高锰酸钾为氧化剂,处理水样时所消耗的氧量,以氧的mg/L来表示。水中部分有机物及还原性无机物均可消耗高锰酸钾。因此,高锰酸钾指数常作为水体受有机物污染程度的综合指标。

水样加入硫酸使呈酸性后,加入一定量的高锰酸钾溶液,并在沸水浴中加热反应一定的时间。剩余的高锰酸钾加入过量草酸钠溶液还原,再用高锰酸钾溶液回滴过量的草酸钠,通过计算求出高锰酸盐指数。

2、仪器

水浴装置 250mL锥形瓶 50mL酸式滴定管

3、试剂

1.高锰酸钾溶液(C(1/5 KMnO4)=0.1mol/L):称取3.2g高锰酸钾溶于1.2L水中,加热煮沸,使体积减少到约1L,放置过夜,用G-3玻璃砂芯漏斗过滤后,滤液储于棕色瓶中保存。

2.高锰酸钾溶液(C(1/5 KMnO4)=0.01mol/L):吸取25mL上述高锰酸钾溶液,?用水稀释至250mL,储于棕色瓶中。使用前进行标定,并调节至0.01mol/L准确浓度。

3.1+3硫酸

4.草酸钠标准溶液(C(1/2Na2C2O4)=0.1000mol/L)?:称取0.6705g在105-110℃烘干一小时并冷却的草酸钠溶于水,移于100mL容量瓶中,用水稀释至标线。

5.草酸钠标准溶液(C(1/2Na2C2O4)=0.0100mol/L)?:吸取10.00mL上述草酸钠溶液移入100mL容量瓶中,用水稀释至标线。

4、实验步骤

1.取100mL混匀水样(如高锰酸盐指数高于5mg/L,则酌量少取,并用水稀释至100mL)于250mL锥形瓶中。

2.加入5mL(1+3)硫酸,摇匀。

3.加入10.00mL0.01mol/L高锰酸钾溶液,摇匀,立即放入沸水浴中加热30分钟(从水浴重新沸腾起计时)。沸水浴液面要高于反应溶液的液面。

4.取下锥形瓶,趁热加入10.00mL0.0100mol/L草酸钠标准溶液,摇匀,?立即用0.01mol/L高锰酸钾溶液滴定至显微红色,记录高锰酸钾溶液消耗量。

5.高锰酸钾溶液浓度的标定:将上述已滴定完毕的溶液加热至70℃,?准确加入10.00mL草酸钠标准溶液(0.0100mol/L)再用0.01mol/L高锰酸钾溶液滴定至显微红色。记录高锰酸钾溶液的消耗量,按照下式求得高锰酸钾溶液的校正系数(K):

K=10.00V

式中:V—高锰酸钾溶液消耗量(mL)。若水样经稀释时,?应同时另取100mL水,同水样操作步骤进行空白实验。

2)混凝沉淀实验

1.试验机理: 根据研究,胶体微粒都带有电荷。天然水中的粘土类胶体微粒以及污水中的胶态蛋白质和淀粉微粒等都带有负电荷。微粒一般由胶核、固定层和扩散层组成。胶核和固定层一般称为胶粒,胶粒与扩散层之间有一个电位差,此电位称为ζ电位。胶粒在水中受几方面的影响:

①带相同电荷的胶粒之间产生的静电斥力;

②胶粒在水中作的不规则运动,即“布朗运动”;

③胶粒之间的范德华引力;

④水化作用,由于胶粒带电,将极性水分子吸引到它的周围形成一层水化膜,水化膜同样能阻止胶粒间相互接触。

因此胶体微粒不能相互聚结而长期保持稳定的分散状态。投加混凝剂能提供大量的正离子,可以压缩双电层,降低ζ电位,静电斥力减少,水化作用减弱;混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒之间起吸附架桥作用,也有沉淀网捕作用。这样投加了混凝剂之后,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体后沉淀。

2.试验器材: 六联搅拌器或磁力搅拌器1台 pH酸度计1台或pH试纸 光电浊度计1台 温度计1支 200ml烧杯4个 1000ml烧杯1个 1ml、2ml、5ml、10ml移液管各一支 10%的FeCl3、Al2(SO4)3、NaSiO3溶液各1瓶 500ml 的NaOH溶液和的HCl溶液各1瓶。

3.试验步骤:

最佳投药量实验步骤

1、测定原水温度、浊度及pH值。

2、分别取200ml水样于250ml烧杯中,每组4个水样,将4个水样置于搅拌器上,分

别加入数滴浓度为10%的Al2(SO4)3药液于各烧杯中。

3、投药后迅速启动搅拌机,使搅拌机快速运转,同时开始记时,快速搅拌30S,快速搅拌完成后,迅速将转速转制慢速搅拌阶段,时间15分钟。

4、搅拌过程中观察记录矾花形成的过程、矾花外观、大小、密实程度(记录于表1中)。

5、搅拌完成后停机,将水样杯取出置一旁静沉,并观察矾花形成及沉淀的情况,待沉淀20分钟后,取烧杯中清液分别测定其pH值、浊度,同时记录于表1中。

6、确定最佳投药量。

最佳pH值实验步骤

1、在4个250ml烧杯分别放入200ml原水样,置于实验搅拌器的平台上。

2、确定原水特征(包括原水浊度、pH值、温度)。

3、向各烧杯中加入相同量的混凝剂。(投加剂量按照最佳投药量实验中得出的最佳投药量而确定)。

4、用HCl或NaOH调整至各杯水样的pH至分别为6、7、8、9,记录所用酸碱的投加量(表2)。

5、启动搅拌器,快速搅拌30秒;然后同(一)。

6、关闭搅拌机,将水样取出置一旁静沉并观察矾花形成及沉淀的情况,20分钟后,取烧杯的上清液,分别测定其浊度,记录于表2中。

7、确定最佳pH.。

完成第一组水样后,按同样步骤,用第二种混凝剂做第二组实验。

六、 实验数据及数据处理结果

表二 最佳投药量结果记录

原水温度 10 C 浊度 31.3 pH 6 混凝剂的种类、浓度 FeCl3 10%

表三 最佳pH试验结果记录

原水温度 10 C 浊度 31.3 pH 6 使用混凝剂的种类、浓度 FeCl3 10%

1. 高锰酸钾溶液的校正系数(K):

K=

已知:V=18.2ml-10.4ml=7.8ml 得: K=1.28 2.水样不经稀释

高锰酸钾指数(O2,mg/L)=10.00V

[(1V1)K10]M81000

100

已知:V1 =7.80ml K=1.28 M=0.01mol/L 得;高锰酸钾指数(O2,mg/L)=10.23 3.水样经稀释

高锰酸钾指数(O2,mg/L)=

{[(10V1)K10][(10V0)K10]C}M81000V2

已知:V1 =7.80ml K=1.28 M=0.01mol/L V0=ml C=0.5 V2=100ml 得:高锰酸钾指数(O2,mg/L)=4.58

六.实验结果讨论

由以上数据及处理结果可知水样高锰酸钾指数(O2,mg/L)=10.23,PH=6; 当混凝剂滴入0.4ml时混凝效果最好,PH为9时混凝效果最好。

七.思考题

1、为什么最大投药量时,混凝效果不一定好?

投入的药量应根据胶体浓度及无机金属盐水解产物的分子形态、荷电性质和荷电量等而确定。当高分子混凝剂投药量最大时,会产生“胶体保护”作用。胶体保护可理解为:当全部胶粒的吸附面均被高分子覆盖以后,两胶粒接近时,就受到高分子的阻碍而不能聚集,这种阻碍来源于高分子之间的相互排斥。排斥力可能来源于“胶粒-胶粒”之间高分子受到压缩变形而具有排斥势能,也可能由于高分子之间的电斥力(对带电高分子而言)或水化膜。而且投药量大也容易出现产生大量含水率很高的污泥的问题。这种污泥难于脱水,会给污泥处置带来很大困难。所以投药量最大时,混凝效果不一定是好的,应该根据具体废水的性质以及共存杂质的种类和浓度,通过实验,选定出适当的混凝剂种类与投加的剂量。

2、助凝剂的作用是什么?

助凝剂的作用机理是桥接固体炫富颗粒,从而使悬浮物迅速下沉。

3、臭氧氧化的影响因素有哪些?

温度、pH值、处理时间、空气湿度等。

4、化学处理与生物处理的区别何在?

化学处理采用化学试剂,如絮凝剂; 生物处理采用微生物的代谢来处理污染物。

展开阅读全文

更多相似范文

篇1:自构建光纤链路的otdr测试实验报告模板_实验报告_网

范文类型:汇报报告,全文共 6767 字

+ 加入清单

构建光纤链路的otdr测试实验报告模板

自构建光纤链路的otdr测试实验报告模板

实验名称:自构建光纤链路的otdr测试实验 实验日期:指导老师: 林远芳学生姓名:同组学生姓名: 成绩:

一、实验目的和要求二、实验内容和原理三、主要仪器设备四、实验结果记录与分析

五、数据记录和处理 六、结果与分析 七、讨论、心得

一、实验目的和要求

1. 了解瑞利散射及菲涅尔反射的概念及特点;

2. 熟练掌握裸纤端面切割、清洁、连接对准方法及熔接技术;

3. 熟悉光时域反射仪(optical time domain reflectometer,以下简称 otdr)的工作原理、操作方法和使用要点,能利用 otdr 测试、判断和分析光纤链路中的事件点位置及其产生原因,提高工程应用能力。

二、实验内容和原理

1.otdr 测试基本理论

散射:光遇到微小粒子或不均匀结构时发生的一种光学现象,此时光传输不再具有良好的方向性。

瑞利散射:当光在光纤中传播时,由于光纤的基本结构不完美(光纤本身的缺陷、制作工艺和材料组分存在着分子级大小的结构上的不均匀性),一部分光纤会改变其原有传播方向而向四周散射(图 1-3-1),引起光能量损失,其强度与波长的 4 次方成反比,随着波长的增加,损耗迅速下降。

后向或背向散射:瑞利散射的方向是分布于整个立体角的,其中一部分散射光纤和原来的传播方向相反,返回到光纤的注入端,形成连续的后向散射回波。光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。

菲涅尔反射:当光纤由一种媒质进入另一种媒质时会产生的一种反射,其强度与两种媒质的相对折射率的平方成正比。如图1-3-2 所示,一束能量为p0 的光,由媒质 1(折射率为nl)进入媒质 2(折射率为 n2)产生的反射信号为p1,则

n1n2p1nn21 2

衰减:指信号沿链路传输过程中损失的量度,以 db 表示。衰减是光纤中光功率减少量的一种度量, 光纤内径中的瑞利散射是引起光纤衰减的主要原因。 通常, 对于均匀光纤来说,可用单位长度的衰减,即衰减系数来反映光纤的衰减性能的好坏。

当光脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射。这种散射向着四面八方,其中总有一部分会沿着纤轴反向传输到输入端。由于主要的散射是瑞利散射,并且瑞利散射光的波长与入射光的波长相同,其光功率与该散射点的入射光功率成正比,光纤中散射光的强弱反映了光纤长度上各点衰减大小,光纤长度上的某一点散射信号的变化,可以通过后向散射方法独立地探测出来,而不受其它点散射信号改变的影响,所以测量沿纤轴返回的后向瑞利散射光功率就可以获得光沿着光纤传输时的衰减及其它信息。

基于后向散射法设计的测量仪器称为 otdr,其突出优点在于它是一种非破坏性的单端测量方法,测量只需在光纤的一端进行。它利用激光二极管产生光脉冲,经定向耦合器注入被测光纤,然后在同一端测量沿光纤轴向向后返回的散射光功率返回信号与时间的关系,将时间值乘以光在光纤中的传播速度以计算出距离, 在屏幕上显示返回信号的相对功率与距离之间的关系曲线和测试结果。国内厂家主要是中国电子科技集团公司第四十一研究所,国外的品牌主要有安捷伦(agilent) 、安立(aitsu) 、exfo、wavetek 等。2.光纤的连接

光纤连接时的耦合损耗因素基本上可分为两大类:一类是固有的,是被连接光纤本身特性参数的差异,比如纤芯直径、模场直径、数值孔径差异、纤芯或模场的同心度偏差、纤芯椭圆度等。这些因素所引起的光纤连接损耗一般无法通过连接技术来改善;另一类是光纤连接时

光纤的端面质量、对中质量和连接质量等因素,比如光纤的端面切割质量、端面间隙、纤轴的横向错位、纤轴的角度倾斜、纤芯形变等因素。这些因素所引起的连接损耗可通过连接技术的改进而得到改善。

3. 典型事件

用 otdr 测量光纤链路可识别出由于拼接、接头、光纤破损或弯曲及链路中其他故障所造成的光衰减的位置及大小。otdr 接收和显示的不仅仅是来自各事件的信号,而且包括来自光纤本身的信号。这种来自光纤本身的信号就是后向散射。当光沿着光纤传送时会由于瑞利散射效应而衰减,这是由于光纤折射率微小变化等引起的,并且它沿着整根光纤持续发生。后向散射强度的变化决定了光纤链路沿线各事件的损耗值。

非反射事件:

光纤熔接头和微弯会导致光纤中有一些光功率损耗,但不会引起反射。在otdr 测试曲线上,这种事件会以“在后向散射电平上附加一个下降台阶”的形式表现出来,竖轴上后向散射电平值的改变量即为损耗的大小,如图 1‐3‐6所示。

反射事件:

在光纤链路中,光纤的几何缺陷、断裂面、故障点、活动连接和固定连接等都会造成折射率突变,使光在光纤中产生菲涅尔反射,称之为反射事件。反射和散射的强弱都和通过的光功率成正比,菲涅尔反射光功率远大于后向瑞利散射光功率,则在 otdr 显示的测试曲线上,对应于光纤菲涅尔反射点处有突变的峰值区(有一个急剧的上升和下降) 。如图 1‐3‐7 所示,光纤链路中的活动连接和固定连接的接头以及光纤上的裂缝都会同时引起光的反射和损耗。反射值(通常以回波损耗的形式表示)是由后向散射曲线上反射峰的幅度所决定的,竖轴上后向散射电平值的改变量即为损耗的大小。

光纤末端:如果光纤末端(尾端)是平整的端面或者在尾端接有平整、抛光了的活动连接器,则尾端会存在反射率为 4%的菲涅尔反射,意味着 otdr 测试曲线具有反射终端,如图 1‐3‐8(a)所示。如果尾端是破裂的端面或者被磨花了,则由于端面的不规则会使光纤漫射而不会引起反射,在这种情况下,光纤末端的 otdr 测试曲线会从后向反射电平简单下降到 otdr 噪声电平下,如图 1‐3‐8(b)所示。虽然破裂的尾端也可能引起反射,但其反射峰不会像平整的光纤末端或活动连接器所带来的反射峰值那么大。

4.otdr 主要性能参数

(1)动态范围

otdr 的信号是通过对数放大器处理的,测试曲线的相对后向散射功率是对数标度,读

得的是电平值, 而且是经过往返两次衰减的值。 后向散射电平初始值与噪声电平的差值 (db) 定义为动态范围。如图 1‐3‐9 所示,根据噪声电平的取法,有两种不同的动态范围表 示方式:

‐‐峰值:取噪声电平的峰值,这是一种传统的比较有意义的指标表示方式。在后向散射 电平与噪声电平相等时,后向散射信号就成了不可见信号。

‐‐信噪比 s=1:取噪声电平的均方根值。

动态范围和被测光纤的衰减决定了 otdr 实际可以测量的光纤最长距离:

d lmax

其中:d 为 otdr 的动态范围,a 为被测光纤的衰减常数。由此可以分析得知:对衰减 一定的光纤而言,otdr 的动态范围越大,则可测量的光纤长度越长,反之越短;对同一动态范围的 otdr 而言,光纤衰减越小,则可测量的光纤长度越长,反之越短。

(2)盲区

用 otdr 测试光纤时,反映不出某段范围内光纤损耗等的测量情况,称之为盲区。反射 会使 otdr 的接收器进入饱和状态,接收器从饱和状态逐渐恢复会产生一个“拖尾”。“托尾”

过后,otdr就可以对光纤的后向散射进行测量。

事件盲区:从反射峰的起始点到接收器从饱和峰值恢复到 1.5db 之间的距离。在这点上 紧接的第二个反射为可识别反射,但这时损耗和衰减仍为不可测事件。

衰减盲区:从反射峰的起始点到接收器从饱和状态恢复到线性后向散射上 0.5db 点之间 的距离。(贝尔实验室文件建议的指标是 0.1db,但 0.5db 是一个更常用的指标值)。三、主要仪器设备

跳纤;尾纤;裸纤;剥纤钳;笔式光纤切割刀;av33012光纤切割器;吹气球、擦镜纸、无水乙醇、脱脂棉棒、光纤接头清洁器等光纤端面处理与清洁工具;常规法兰、5db和 10db 法兰式光衰减器;使用精密 v槽实现光纤临时耦合对接的av87501 光纤对接器;av6471 光纤熔接机;具有 32db 动态范围和 0.1m测距分辨率的av6413高性能微型otdr, 具有28db动态范围和0.25m测距分辨率、 并且内置波长为650nm的肉眼可视红光出射功能的 av6416 掌上型 otdr。

四、实验结果记录与分析(以下为示例,摘自08级学生实验报告,请同学们根据实验结果自行分析)无损/2db/5db/10db -3:

185m

1.28km

图1、自构建的链路情况:法兰盘+机械连接+熔接图2、测试波形及事件表

结果分析:

此次实验得到了非常好的结果,把所有的事件都测试出来了,数值和长度都很合理。

1) 第一个35.1m的非反射损耗是意外出现的,在此后的实验结果中也都存在,因此我们判定此

卷光纤在这个地方存在损伤

2) 第一个反射事件:发生在1.31km处,即为法兰盘的连接位置,因此我们新接入的光纤长度

为1.3km,且法兰盘的连接损耗为1.122db,反射高度为38.326db。虽然标称是无损的法兰盘,其实还是存在“注意”中所说的机械压力和空气间隙的损耗

3) 第二个反射事件:发生在1.46km处,事件间隔一段150m左右的光纤,明显是机械连接的

4) 非反射事件:在1.646km处,为明显的“台阶式下降”损耗,是熔接损耗,大小为0.021db, 且与机械连接相隔的光纤长度为1.646-1.461=0.185km,也就是185m左右

5) 光纤末端:光纤总长度为2.93km,尾纤长度约为2.93-1.65=1.28km左右

五、思考题

1、动态范围和盲区的大小都与光脉冲宽度的设定值有关。当分别需要对光纤远端、靠近otdr 附近的光纤以及两个紧邻事件进行观测时,应该分别选择宽脉冲还是窄脉冲?

2、测量损耗时选择的算法(分为tpa和lsa两种,前者表示用“两点”法测量两个标记点之间的平均损耗,只有这两个标记点参与计算,后

者表示用最小二乘法计算两个标记点之间的平均损耗,是利用两个标记点间的拟合曲线来进行计算)不同,则测试值也不同。对于中间没有任何事件点的一段连续光纤来说,选择上面哪种算法所得的测试值更准确些?

3、手动测试时什么参数的设定会影响测试轨迹信噪比?如何合理设置量程、衰减和折射率?

4、实际测量时,为了避开近端盲区, 通常在 otdr 输出端引入一段 “过渡光纤”, 将 otdr光输出连接器产生的盲区控制在过渡光纤上,以此减小盲区对测量结果的影响。那么,对过渡光纤的长度是如何要求的?它与被测光纤应以何种形式连接才能消除盲区?

5、采样间隔如何影响 otdr 测试曲线?如何才能减小因采样间隔带来的距离测量误差?

6、用 otdr 从两个方向分别测试光纤上的同一接续点,结果有时会不同甚至相差很多,为什

么?如何才能得到比较真实准确的接头损耗值?

7. 提出你对实验装置及实验内容的意见及建议。篇二:8李唐军实验报告单模光纤损耗测试实验

实验八 单模光纤损耗测试实验

光时域反射仪(otdr) 是一种相当复杂的仪表,它广泛地应用于实验室和现场。它所采用的测试技术也常称为后向散射测试技术。它能测试整个光纤网络链路的衰减并能提供和光纤长度有关的衰减细节;otdr还可测试光纤线路中接头损耗并可定位故障点位置;otdr这种后向散射测试具有非破坏性且只需在一端测试的优点。

一、 实验目的

(1)掌握otdr工作原理;

(2)熟悉otdr测试方法。

二、 实验内容

(1)利用otdr测量一盘光纤的衰减系数和光纤总长度;

(2)测量两盘光纤连接处的接头损耗。

三、 基本原理

otdr由激光发射一束脉冲到被测光纤中。脉冲宽度可以选择,由于被测光纤链路特性及光纤本身特性反射回的信号返回otdr。信号通过一耦合器到接收机,在那里光信号被转换为电信号。最后经分析并显示在屏幕上。

由于时间乘以光在光纤中的速度即得到距离,这样,otdr可以显示返回的相对光功率对距离的关系。有了这个信息,就可得出有关链路的非常重要的特性。可以从otdr得出的光路信息有:

(1)距离:链路上特征点(如接头、弯曲)的位置,链路的长度等。

(2)损耗:单个光纤接头的损耗。

(3)衰减:链路中光信号的衰减。

(4)反射:一事件的反射大小,如活动连接器。

图1为otdr测试的一般原理。它显示了otdr测试链路上可能出现的各类事件。 衰减及其测试方法:

光纤衰减和波长密切相关。衰减系数随波长变化的函数被称之为损耗谱。人们最感兴趣的是工作波长下的衰减系数,如在=1310nm、1550nm等波长下的衰减系数。在光纤长度z1和z2之间,波长为的损耗r 可由下式定义:

r10logp1(db)p2

p1和p2分别表示传过光纤截面点z1和z2的光功率。如果p1和p2之间的距离为l,可用下式计算出每单位距离的损耗,即衰减系数。

p10log1(db/km)z1z2p2p10log1(db/km)lp2 图1 用otdr测试的一般原理

入射到光纤的光脉冲随着在光纤中传播时被吸收和散射而被衰减。一部分散射光返回入射端。通过分析后向散射光的强度及其返回入射端的时间,可以算得光纤损耗。假设入射光脉冲宽度为t、功率为p(0),这束光脉冲以群速度vg在光纤中传播,假设耦合进光纤中的光功率为 p0 ,考虑沿光纤轴线上任一点 z,设该点距入射端的距离为 z ,那么

该点的光功率为:

p(z)p(0)exp[f(x)dx](1 ) 0z

式中,f(x)是光纤前向衰减系数。若光在 z点被散射 ,那么该点的背向散射光返回到达入射端时的光功率为:

ps(z)s(z)p(z)exp[b(x)dx] (2 ) 0z

式中,s(z)是光纤在 z点的背向散射系数 , s(z)具有方向性 ; b(x)是光纤背向 衰减系数。

将 (1 )式代入 (2 )可得:

ps(z)p(0)s(z)exp[(f(x)b(x))dx](3) 0z

考虑光纤中有 2点 z1 和 z2 ,其距入射端的距离分别为 z1 和 z2 (z2 >z1 ),这 2点的背向散射光到达输入端时为 ps(z1)和 ps(z2),则由 (3)式得

z2ps(z1)s(z1)exp[(f(x)b(x))dx] (4) z1ps(z2)s(z2)

对上式两边去对数得:

z2

z1(f(x)b(x))dxlnps(z1)s(z)ln1(5) ps(z2)s(z2)

一般认为光纤的损耗和光纤的结构参数沿轴向近似均匀 ,即认为前向衰减系数和背向衰减系数不随长度 z而变 ,有f(z),b(z),并认为背向散射系数也不随长度而变 [即s(z1)s(z2)],则 z1 和 z2 两点间损耗系数为:

f(x)b(x)p(z)1lns1 (6) z2z1ps(z2)

由于损耗为正向和反向之和 ,因此可用=1/2[f(z)+b(z)]表示 z1 点到 z2 点这段光纤的平均损耗系数 ,由 (6)式有:

1[lnps(z1)lnps(z2)] (7) 2(z2z1)

由上式原理可通过otdr的测试测定一段光纤的平均损耗系数,式中的ps(z1)、ps(z2)的值可以从otdr显示屏上的连续背向散射轨迹的幅度得到 ,进而可求出平均损耗系数。

与距离有关的信息是通过时间信息而得到的(此即光时域反射计中时域的由来),otdr测量发出脉冲与接收后向散射光的时间差 ,利用折射率n值将这一时域信息转换成距离: zct (8) 2ng其中c为光在真空中的速度 (3×1 0 8m/s)

方向耦合器:

方向耦合器就是光分路耦合器。它把一束光分裂为两路光作不同方向的耦合。光时域反射仪能在光纤的一端进行测量,就是利用了方向耦合器来实现的。这种方向耦合器要能把光分路耦合,同时还要能消除或减少前端的菲涅耳反射。最简单的方向耦合器如图2所示。它是由一块半反射镜(或者叫半反射片)和匹配液盒组成。入射光(实线)一路透过半反射片注入光纤,一路经过半反射片反射,用作入射光功率监测。背向瑞利散射光(虚线),一路透过半反射片到光源,另外一路经过半反射片反射耦合到检测器。这样就把入射光和背向散射光分离开来,光源和检测器都在光纤的同一端,测量能在同一端进行。为了减弱从光纤前端面来的反射光和杂散光的影响,可把光纤的前端面和半反片放置在盛满匹配液的盒里。

这种由半反片和匹配液盒组成的方向耦合器,光路调整困难,而且要用匹配液,不适于现场应用。目前较广泛使用的是整体的方向耦合器——y分路器,其三端通过尾纤分别与光源a、待测光纤b和检测器c直接耦合。

这种y型整体的耦合器比上述组合式插入损耗小,稳定可靠,调节对准方便,还有体积小、重量轻、价格低廉等特点,所以得到广泛使用。

另一种整体的方向耦合器是利用晶体双折射特性设计的。如图4所示的是利用格兰—汤姆生棱镜做成的方向耦合器。

展开阅读全文

篇2:X射线衍射实验报告模板_实验报告_网

范文类型:汇报报告,全文共 2944 字

+ 加入清单

X射线衍射实验报告模板

一、 实验目的

1. 了解X射线衍射仪的结构;

2. 熟悉X射线衍射仪的工作原理;

3. 掌握X射线衍射仪的基本操作。

二、实验原理

X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。

满足衍射条件,可应用布拉格公式:2dsinθ=λ

应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。

三、仪器组成

X射线衍射仪的基本构造原理图, 主要部件包括4部分。

(1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

(2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。

(3) 射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。

(4) 衍射图的处理分析系统 现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。

四、 实验步骤

1)开启循环水系统:将循环水系统上的钥匙拧向竖直方向,打开循环水上的控制器开关ON,此时界面会显示流量,打开按钮RUN即可。调节水压使流量超过

3.8L/min,如果流量小于3.8L/min,高压将不能开启。

2)开启主机电源:打开交流伺服稳压电源,即把开关扳到ON的位置,然后按开关上面的绿色按钮FAST START, 此时主机控制面板上的“stand by”灯亮。

3)按下Light(第三个按钮),打开仪器内部的照明灯。

4) 关好门,把HT钥匙转动90°,拧向平行位置,按下XPert仪器上的Power on(第一个按钮),此时HT指示灯亮,HT指示灯下面的四个小指示灯也会亮,并且会有电压(15KV)和电流(5mA)显示,等待电压电流稳定下来。如果没有电压电流显示,把钥匙拧向竖直位置稍等半分钟再把钥匙拧向平行位置,重复此操作,直到把HT打开。

5)点击桌面上的XPert Data Collector软件,输入账号密码。

6)点击菜单Instrument的下拉菜单Connect,进行仪器连接,出来以对话框,点击OK,再出来对话框还点击OK,此时软件的左侧会出现参数设定界面Flat sample stage。

7)Flat Sample Stage界面共有3个选项卡Instrument Settings,Incident Beam Optics 和 Diffracted Beam Optics,设备老化和电压电流操作均在Instrument Settings下设定,后两个参数设定一般不要动。

8)如果两次操作间隔100个小时以上应选择正常老化,间隔在24~100个小时之间的应选择快速老化。老化的方式:在第7步的Instrument Settings下,展开Diffractometer→X-ray →Generator(点击前面的小“+”号),此时Generator下面有三个参数:Status,Tension和Current,双击这三个参数中的任一个或者右击其中的任一个选择change,会出现Instrument Settings对话框,此时正定位在此对话框的第三个选项卡X-ray上,界面上有X-Ray generator,X-Ray tube和Shutter三项,点击X-Ray tube下的Breed按钮,会出现Tube Breeding对话框,选择breed X-Ray tube的方式:at normal speed或者fast,然后点击ok,光管开始老化,鼠标显示忙碌状态。老化完毕后,先升电压后升电流,每间隔5KV,5mA地升至40KV,40mA,即设备将在40KV和40mA的状态下工作。

9)试样制备:根据样品的量选择相应的试样板,粉体或者颗粒都应尽量使工作面平整。

10)打开设备门,放入样品,把门合上,应合紧,否则会提示Enclosure (doors)not closed的错误。

11)首先选择project,点击XPert Data Collector的Customize菜单下的Select Project,出现Select Current Project的对话框,选择自己的文件夹,点击ok即可。如果还没有自己的project,打开XPert Organizer软件,点击菜单Users & Projects菜单下的Edit Projects,点击New,出现New Project对话框,新建自己的project,点击ok即可。然后重复第11步前半部分。

12)点击菜单Mearsure下的Program,出现Open Program对话框,默认Program type为Absolute scan,默认选择cell-scan,点击ok,出现Start对话框,由于第11步的工作,所以Project name一栏已经选择在自己的文件夹,在Data set name一栏填入试样代号,点击ok,即开始扫描。

13)开始扫描后会出现Positioning the instrument,然后“咔”的一声,仪器门锁上,两臂抬起,开始扫描试样,默认衍射角10~80°。

14)扫描结束后“咔”的一声,两臂开始降落,显示Positioning the instrument,此时一定要等两臂降下来(衍射角约为12.000°时)之后再开门,不然又会提示Enclosure (doors)not closed的错误。

15)测试结束后,先降电流再降电压,把电流和电压分别降到10mA和30KV(每间隔5mA,5KV的降),将钥匙转动90°到竖直位置,关闭高压;等待约2分钟后按下Stand by按钮,关闭主机和循环水系统。如果下次测试时间间隔不超过20小时,就不用关闭高压(不拧钥匙),不关主机和循环水,但是要把电流和电压降下来。

16)导出数据。打开XPert Organizer,Database的下拉菜单的Export的Scans,出来Export scans对话框,点击下面的Filter按钮,通过过滤,查找到相应文件,选中,点击ok,然后点击Folder找到存放的目录,点击ok,然后把rd和csv的格式勾上,并全部选中,ok即可。

17) 光盘刻录。准备好空白光盘,打开刻录软件,按照提示操作。

五、实验结果

TiO2的X射线衍射图谱如下:

六、实验分析

如上图所示,样品所获峰与所选标准卡片主要的峰在出现位置和强度上吻合得都是非常好的,只有样品的第一个峰不能满足,当选用其他能够满足第一峰出现位置的其他标准卡片时,都会带来明显的样品没有的峰,又因为该峰的强度很小,故可以认为是某种干扰或杂质带来的,但我们可以确定的是样品中的最绝大多数物质就是所选标准卡片所对应的物质。

展开阅读全文

篇3:实验报告

范文类型:汇报报告,全文共 869 字

+ 加入清单

实验生物组织中还原糖、脂肪、蛋白质的鉴定

一、实验目的

初步掌握鉴定生物组织中还原糖、脂肪、蛋白质的基本方法。

二、实验原理

1.还原糖的鉴定原理生物组织中普遍存在的还原糖种类较多,常见的有葡萄糖、果糖、麦芽糖。它们的分子内都含有还原性基团(游离醛基或游离酮基),因此叫做还原糖。蔗糖的分子内没有游离的半缩醛羟基,因此叫做非还原性糖,不具有还原性。本实验中,用斐林试剂只能检验生物组织中还原糖存在与否,而不能鉴定非还原性糖。

斐林试剂由质量浓度为0.1g/ml的氢氧化钠溶液和质量浓度为0.05g/ml的硫酸铜溶液配制而成,二者混合后,立即生成淡蓝色的cu(oh)2沉淀。cu(oh)2与加入的葡萄糖在加热的条件下,能够生成砖红色的cu2o沉淀,而葡萄糖本身则氧化成葡萄糖酸。其反应式如下:

用斐林试剂鉴定还原糖时,溶液的颜色变化过程为:浅蓝色棕色砖红色(沉淀)。

2.蛋白质的鉴定原理鉴定生物组织中是否含有蛋白质时,常用双缩脲法,使用的是双缩脲试剂。双缩脲试剂的成分是质量浓度为0.1g/ml的氢氧化钠溶液(a)和质量浓度为0.01g/ml(b)的硫酸铜溶液。在碱性溶液(naoh)中,双缩脲(h2noc—nh—conh2)能与cu2+作用,形成紫色或紫红色的络合物,这个反应叫做双缩脲反应。由于蛋白质分子中含有很多与双缩脲结构相似的肽键,因此,蛋白质可与双缩脲试剂发生颜色反应。

3.脂肪的鉴定原理脂肪可以被苏丹Ⅲ染成橘黄色,被苏丹Ⅳ染成红色

三、实验过程(见书p18)

四、实验用品(见书p18)

五、注意

1.关于鉴定还原糖的实验,在加热试管中的溶液时,应该用试管夹夹住试管上部,并放入盛开水的大烧杯中加热。注意试管底部不要接触烧杯底部,同时试管口不要朝向实验者,以免试管内溶液沸腾时冲出试管,造成烫伤。如果试管内溶液过于沸腾,可以上提试管夹,使试管底部离开大烧杯中的开水。

2.斐林试剂的甲液和乙液混合均匀后方可使用,切勿将甲液和乙液分别加入组织样液中。

3.蛋白质的鉴定中先加双缩脲a,再加双缩脲b

六、讨论

鉴定生物组织中还原糖、脂肪、蛋白质的根据是什么?

展开阅读全文

篇4:汽电专业课程实验报告_毕业设计_网

范文类型:汇报报告,适用行业岗位:设计,全文共 680 字

+ 加入清单

汽电专业课程实验报告

一、 实验目的

1、在宝马电气箱上,利用数字式万用表,连接出以下串联电路,并测量完成填空(见任务二)。

2、进一步强化数字式万用表直流电压、直流电流和电阻档的使用。

二、 实验设备和器材

1、宝马电气箱

2、数字万用表

3、导线若干

三、 实验原理(原理表述、实验设计

根据串联电路电流相等和部分电路欧姆定律电压、电流、电阻之间的关系,测量和计算出有关电流、电压和电阻。

1、在电器箱上,将一只灯泡与一只电阻串联起来,组成一个简单的串联电路。

2、在这个串联电路中,选取五个关键的点15脚、6脚、16脚、17脚、31脚。

3、用万用表的直流电流档测出6脚、16脚两点之间的电流,直流电压档测量15脚和31脚之间的电压。

4、按任务2的要求测量和计算有关电压、电流和电阻的大小。

四、 实验步骤与数据记录

1、通电前,万用表电阻档测量r12、rh2的电阻值,并记录下来。

2、按如图所示电路,利用数字万用表直流电流档,将红表笔、黑表笔分别连接在6脚和16脚之间,通电测量流过负载的电流i的大小,并记录下来。

3、用数字表直流电压档测量15脚和31脚(ub)、15脚和6脚

(r 12两端)、16脚和17脚(r h2两端)的电压,并记录下来。

五、 实验分析与总结

电压ub, ur12和uh1之间有什么关系?

ub=ur12+uh1

分别测量r12和rh2电阻值,并验证计算值,结果如何?

测量值r12=8.1欧姆,与计算值相等;rh1=3.5欧姆,与计算值

不等。

灯泡的亮度与任务1中的灯泡h1亮度进行对比如何?为什么?

灯泡亮度暗一些,因为在电路中串联了一个电阻。

评语

评分  指导教师

展开阅读全文

篇5:书法教育课题开题实验报告[页2]_实验报告_网

范文类型:汇报报告,全文共 375 字

+ 加入清单

书法教育课题开题实验报告

3、总结阶段

总结课题运作情况,查漏补缺,收集、整理资料,撰写课题终端研究报告。

(1)做好实验验证,总结,撰写有关经验论文及实验报告。

(2)收集,完善各种资料,进行分类整理归档。

(3)学校对课题进行自查。

(4)准备验收、评价。

(5)推广实验成果,对课题实验进行反思和总结。

(二)本课题的主要措施

在培养小学生良好的写字素质教育中,我们突出强调了课内与课外训练相结合,写字教育与其它学科教育的相配合。

1、激发兴趣,引导写欲。如创设想象、课件展示、实物演示、模型制作、律动表演、儿歌诵读等。

2、多种途径,科学练习。如执笔运笔新认识、先练长体字新方法、整体观察汉字特点等。

3、兴趣入手,培养美感。如观察对比,辨别汉字书写的美与丑;静中求动,体会汉字结体的稳与险等。

4、构建机制,培养自悟能力。如自评、互评、点评等。

共2页,当前第2页12

展开阅读全文

篇6:实验报告参考

范文类型:汇报报告,全文共 594 字

+ 加入清单

一、实验目的及要求

本实例是通过“站点定义为”对话框中的“高级”选项卡创建一个新站点。

二、仪器用具

1、生均一台多媒体电脑,组建内部局域网,并且接入国际互联网。

2、安装windows xp操作系统;建立iis服务器环境,支持asp。

3、安装网页三剑客(dreamweaver mx;flash mx;fireworks mx)等网页设计软件;

三、实验原理

通过“站点定义为”对话框中的“高级”选项卡创建一个新站点。

四、实验方法与步骤

1)执行“站点管理站点”命令,在弹出的“管理站点”对话框中单击“新建”按钮,在弹出的快捷菜单中选择“站点”命令。

2)在弹出的“站点定义为”对话框中单击“高级”选项卡。

3)在“站点名称”文本框中输入站点名称,在“默认文件夹”文本框中选择所创建的站点文件夹。在“默认图象文件夹”文本框中选择存放图象的文件夹,完成后单击“确定”按钮,返回“管理站点”对话框。

4)在“管理站点”对话框中单击“完成”按钮,站点创建完毕。

五、实验结果

六、讨论与结论

实验开始之前要先建立一个根文件夹,在实验的过程中把站点存在自己建的文件夹里,这样才能使实验条理化,不至于在实验后找不到自己的站点。在实验过程中会出现一些选项,计算机一般会有默认的选择,最后不要去更改,如果要更改要先充分了解清楚该选项的含义,以及它会造成的效果,否则会使实验的结果失真。实验前先熟悉好操作软件是做好该实验的关键。

展开阅读全文

篇7:2024实验教师述职报告

范文类型:汇报报告,适用行业岗位:教师,全文共 1918 字

+ 加入清单

回顾十几年以来的班主任工作,有成绩也有不足,为了更好地做好自己的本职工作,发扬优点,弥补不足。现对近几年来的工作做以总结:

一、亲近学生,研究学生

“谁爱孩子,孩子就会爱他,只有用爱才能教育孩子。”班主任要善于接近孩子,体贴和关心学生,和他们进行亲密的思想交流,让他们真正感受到老师对他的亲近和爱。这是班主任顺利开展一切工作的基础。研究学生是教育取得成功的必要条件,最好的途径是通过活动观察。所以我每次在接新班之前,首先先了解班风、学风,了解全班主要的优缺点并分析其原因所在,了解家长普遍的文化层次,找到亟待纠正的弱点;二要研究学生的个性特征(包括能力、气质、性格、爱好等),了解个人的生活环境,掌握哪些是积极分子,哪些是特别需要注意的学生等等。

二、强化管理 细致入微

管理班级工作是班主任的重要工作之一。为了做好班级管理工作,更好地完成教学任务、为教学服务,重点以发现和培养具有综合素质的人才为班级干部。具体分工,连带促进,使班集体齐心协力、团结一致、相互监督,形成良好风气。在学习上,学生能严守学校规章制度,按老师要求完成各学科作业,成绩有很大提高。为使学生的思想上受到良好的熏染,通过中队会及班会对他们进行文明礼貌、爱国爱家、勤俭节约、交通安全等教育,使他们的意识逐步提高,增强社会实践及生活自理能力。这一切受到了领导及同事的一致好评。为使学校和家庭建立更密切的联系,因材施教,使学生的全方面素质得到锻炼及发展,在本学期中,以家访为主,充分发挥家庭、社会、学校三方面结合的综合作用,以促进学生能够沿着正确的方向健康成长。在本学期中,由于学生能够有较强的爱护公物意识,并且能够进行维护,班级物品无损坏、丢失现象。学生的精神面貌及文化素养有很大的改观,集体观念明显增强,有一定责任感、义务感,及主人翁意识。

二、组建网络 以点带面

一个班的集体面貌如何,很大程度上是由小干部决定的。小干部对班集体有着“以点带面”和“以面带面”的作用,我称他们是“班主任的左右手”。所以唯有慎重地选拔和培养干部队伍,班主任工作才能逐渐从繁重走向简单与轻松。所以,我做教的班当选的干部应具有较强的号召力和自我管理能力。我不会将干部队伍的组建仅仅作为一种形式存在,我总是精心培养:其一,大力表扬干部优点,宣传他们的先进事迹,帮助小干部树立威信;其二,在鼓励干部大胆工作,指点他们工作方法的同时,更严格要求干部个人在知识、能力上取得更大进步,在纪律上以身作则,力求从各方面给全班起到模范带头作用,亦即“以点带面”;其三,培养干部团结协作的精神,通过干部这个小集体建立正确、健全的舆论,带动整个班集体开展批评与自我批评,形成集体的组织性、纪律性和进取心。

三、强化训练 严肃活泼

良好的常规是进行正常的学习和生活的保障,一个学生调皮捣蛋、不合常规的举动往往会使一堂好课留下遗憾,使整个集体活动宣告失败,甚至使全班努力争取的荣誉付诸东流,直接影响到班集体的利益。因此,我很注意扎实有效地加强一个学生的常规训练。 训练的内容包括《小学生守则》和《小学生日常行为规范》要求的常规、课堂常规、集会和出操常规、卫生常规、劳动常规、参观常规以及路队常规等等诸多方面。使学生具有自我约束力,形成习惯,保证整个班集体随时表现出“活而不乱,严而不死“的良好班风班貌。

四、互助小组 共同进步

以互助小组、1+1小组(一一对应的优生帮助差生形式)、小组帮助组员等等多种互助方式促使差生取得更大进步,共同实现个人、小组与集体奋斗的目标。此外,我还经常通过观察、与学生谈心、干部和同学之间互相监督汇报以及听取来自校领导、其他老师、社会的意见等等途径,建立起丰富的信息网络,随时掌握与调控学生的思想行为动向。在此基础上,与特殊的学生建立特别的互助小组,对这个别的孩子的学习、思想、行为、习惯在充分了解的基础上进行有效的引导。以发挥这些学生的潜能。

五、其它方面

能认真执行学校的各项规章制度,忠诚党的教育事业,严格遵守作息时间,按时参加继续教育学习,并认真做好笔记,努力把学到的知识应用到教学实践中去,做到学以致用。服从领导分配,积极配合领导工作,勇挑重担。

总之,在工作中,是取得了一些成绩,但也有许多不足之处。如:学生家长不能很好地配合学校和教师工作,从而导致对学生的教育失衡;学生在课堂上主体性的体现还不能够太放开等等,都需要自己在以后的实践中去探索。我相信我在今后的教育教学中会一如继往,用我全部的爱心和耐心去教育我的学生,使自己成为学生学习的伙伴,共同营造一个轻松、愉悦的学习环境,让我所带的班级体成为所有人羡慕的焦点!我也时时切记:勤能补拙;时间就是效率、时间就是质量、时间就是生命!付出就有收获。

展开阅读全文

篇8:微波顺磁共振、核磁共振实验报告

范文类型:汇报报告,全文共 4012 字

+ 加入清单

摘要:

电子自旋共振(Electron Spin Resonance),缩写为ESR,又称顺磁共振(Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象。目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等等。

1939年美国物理学家拉比用他创立的分子束共振法实现了核磁共振。1945年至1946年珀赛尔小组和布洛赫小组分别在石蜡小组分别在石蜡和水中观测到稳态核磁共振信号,从而在宏观的凝聚物质中取得成功。此后,核磁共振技术迅速发展,还渗透到生物、医学、计量等学科领域以及众多生产技术部门,成为分析测试中不可缺少的实验手段。

关键词:电子自旋共振 共振跃迁 铁磁共振 g因子

引言:

顺磁共振(EPR)又称为电子自旋共振(ESR),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。研究了解电子自旋共振现象,测量有机自由基DPPH的g因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。

铁磁共振和顺磁共振、核磁共振一样是研究物质宏观性能和微观结构的有效手段本实验采用扫场法进行微波铁磁材料的共振实验。即保持微波频率不变,连续改变外磁场,当外磁场与微波频率之间符合一定的关系时,可发生射频磁场的能量被吸收的铁磁共振现象。微波铁磁共振在磁学和固体物理学中占有重要地位。它是微波铁氧体物理学的基础。微波铁氧体在雷达技术和微波通信方面有重要的应用。

顺磁共振

1、实验原理:

一、 电子的自旋轨道磁矩与自旋磁矩

原子中的电子由于轨道运动,具有轨道磁矩,其数值为:

e

2me?lPl 负号表示方向同Pl相反

在量子力学中Pl?

l?e?B 其中?B?e?2me称为玻尔磁子。

电子除了轨道运动外还具有自旋运动,因此还具有自旋磁矩,

其数值表示为:?semePs?由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子的总磁矩:?jge2mePj 其中g是朗德因子,g?1?j(j?1)?l(l?1)?s(s?1)2j(j?1)

在外磁场中原子磁矩要受到力的作用,其效果是磁矩绕磁场的方向作旋进,也就是Pj绕着磁场方向作旋进,引入回磁比ge

2me,总磁矩可表示成?jPj。同时原子角动

量Pj和原子总磁矩?j取向是量子化的。Pj在外磁场方向上的投影为:

Pj?m? m?j,j?1,j?2,j

其中m称为磁量子数,相应磁矩在外磁场方向

?jmmg?B m?j,j?1,j?2,j

二、电子顺磁共振

原子磁矩与外磁场B相互作用可表示为:Ej?Bmg?BBm?B

不同的磁量子数m所对应的状态表示不同的磁能级,相邻磁能级间的能量差为?EB,它是由原子受磁场作用而旋进产生的附加能量。

如果在原子所在的稳定磁场区又叠加一个与之垂直的交变磁场,且角频率?满足条件 g?BB即EB,刚好满足原子在稳定外磁场中的邻近二能级差时,二邻

近能级之间就有共振跃迁,我们称之为电子顺磁共振。

当原子结合成分子或固体时,由于电子轨道运动的角动量常是猝灭的,即Pj近似为零,

所以分子和固体中的磁矩主要是电子自旋磁矩的贡献。根据泡利原理,一个电子轨道最多只能容纳两个自旋相反的电子,若电子轨道都被电子成对地填满了,它们的自旋磁矩相互抵消,便没有固有磁矩。通常所见的化合物大多数属于这种情况,因而电子顺磁共振只能研究具有未成对电子的特殊化合物。

三、弛豫时间

实验样品是含有大量具有不成对电子自旋所组成的系统,虽然各个粒子都具有磁矩,但是在热运动的扰动下,取向是混乱的,对外的合磁矩为零。当自旋系统处在恒定的外磁场H0中时,系统内各质点的磁矩便以不同的角度取向磁场H0的方向,并绕着外场方向进动,从而

形成一个与外磁场方向一致的宏观磁矩M。当热平衡时,分布在各能级上的粒子数服从波耳兹曼定律,即:

N2

N1?exp(?E2?E1kT)?exp(EkT)

式中k是波耳兹曼常数,k=1.3803×10-16(尔格/度),T是绝对温度。计算表明,低能级上的粒子数略比高能级上的粒子数多几个。这说明要现实出宏观的共振吸收现象所必要的条件,既由低能态向高能级跃迁的粒子数比由高能级向低能级跃迁的粒子数要多是满足的。正是这一微弱的上下能级粒子数之差提供了我们观测电子顺磁共振现象的可能性。

2、实验装置

微波顺磁共振实验系统由三厘米固态信号发生器,隔离器,可变衰减器,波长计,魔T,匹配负载,单螺调配器,晶体检波器,矩形样品谐振腔,耦合片,磁共振实验仪,电磁铁等组成,为使联结方便,增加了H面弯波导,波导支架等元件

三厘米固态信号发生器:是一种使用体效应管做振荡源的信号发生器,为顺磁共振实验系统提供微波振荡信号。

隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其哦对微波具有单方向传播的特性。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。

可变衰减器:把一片能吸收微波能量的吸收片垂直与矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。

波长表:电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

微波源:微波源可采用反射式速调管微波源或固态微波源。本实验采用3cm固态微波源,它具有寿命长、输出频率较稳定等优点,用其作微波源时,ESR的实验装置比采用速调管简单。因此固态微波源目前使用比较广泛。通过调节固态微波源谐振腔中心位置的调谐螺钉,可使谐振腔固有频率发生变化。调节二极管的工作电流或谐振腔前法兰盘中心处的调配螺钉可改变微波输出功率。

魔 T:魔 T是一个具有与低频电桥相类似特征的微波元器件,如图(2)所示。它有四个臂,相当于一个E~T和一个H~T组成,故又称双T,是一种互易无损耗四端口网络,具有“双臂隔离,旁臂平分”的特性。利用四端口S矩阵可证明,只要1、4臂同时调到匹配,则2、3臂也自动获得匹配;反之亦然。E臂和H臂之间固有隔离,反向臂2、3之间彼此隔离,即从任一臂输入信号都不能从相对臂输出,只能从旁臂输出。信号从H臂输入,同相等分给2、3

臂;E臂输入则反相等分给2、3臂。由于互易性原理,若信号从

反向臂2,3同相输入,则E臂得到它们的差信号,H臂得到它们

的和信号;反之,若2、3臂反相输入,则E臂得到和信号,H臂

得到差信号。

当输出的微波信号经隔离器、衰减器进入魔 T的H臂,同相

等分给2、3臂,而不能进入E臂。3臂接单螺调配器和终端负载;

2臂接可调的反射式矩形样品谐振腔,样品DPPH在腔内的位置可

调整。E臂接隔离器和晶体检波器;2、3臂的反射信号只能等分给E、H臂,当3臂匹配时,E臂上微波功率仅取自于2臂的反射。 右图 魔T示意图

样品腔:样品腔结构,是一个反射式终端活塞可调的矩型谐振腔。谐振腔的末端是可移动的活塞,调节活塞位置,使腔长度等于半个波导波长的整数倍(l?p?g/2)时,谐振腔

谐振。当谐振腔谐振时,电磁场沿谐振腔长l方向出现P个长度为?g/2的驻立半波,即TE10P模式。腔内闭合磁力线平行于波导宽壁,且同一驻立半波磁力线的方向相同、相邻驻立半波磁力线的方向相反。在相邻两驻立半波空间交界处,微波磁场强度最大,微波电场最弱。满足样品磁共振吸收强,非共振的介质损耗小的要求,所以,是放置样品最理想的位置。 在实验中应使外加恒定磁场B垂直于波导宽边,以满足ESR共振条件的要求。样品腔的宽边正中开有一条窄槽,通过机械传动装置可使样品处于谐振腔中的任何位置并可以从窄边上的刻度直接读数,调节腔长或移动样品的位置,可测出波导波长?。

3、实验步骤:

1、连接系统,将可变衰减器顺时针旋至最大, 开启系统中各仪器的电源,预热20分钟。

2、将磁共振实验仪器的旋钮和按钮作如下设置: “磁场”逆时针调到最低,“扫场” 逆时针调到最低,按下“调平衡/Y轴”按钮(注:必须按下),“扫场/检波”按钮弹起,处于检波状态。(注:切勿同时按下)。

3、将样品位置刻度尺置于90mm处,样品置于磁场正中央。

4、将单螺调配器的探针逆时针旋至“0"刻度。

5、信号源工作于等幅工作状态,调节可变衰减器使调谐电表有指示,然后调节“检波灵敏度”旋钮, 使磁共振实验仪的调谐电表指示占满度的2/3以上。

6、用波长表测定微波信号的频率,方法是:旋转波长表的测微头,找到电表跌破点,查波长表——刻度表即可确定振荡频率,使振荡频率在9370MHz左右,如相差较大,应调节信号源的振荡频率,使其接近9370MHz的振荡频率。测定完频率后,将波长表旋开谐振点。

7、为使样品谐振腔对微波信号谐振,调节样品谐振腔的可调终端活塞,使调谐电表指示最小,此时,样品谐振腔中的驻波分布如图7-4-5所示。

图7-4-5 样品谐振腔中的驻波分布示意图

展开阅读全文

篇9:初中物理观察凸透镜成像的实验报告_实验报告_网

范文类型:汇报报告,适用行业岗位:初中,全文共 788 字

+ 加入清单

初中物理观察凸透镜成像实验报告

一、提出问题:平面镜成的是实像还是虚像?是放大的还是缩小的像?所成的像的位置是在什么地方?

二、猜想与假设:平面镜成的是虚像。像的大小与物的大小相等。像与物分别是在平面镜的两侧。

三、制定计划与设计方案:实验原理是光的反射规律。

所需器材:蜡烛(两只),平面镜(能透光的),刻度尺,白纸,火柴,

实验步骤:

1.在桌面上平铺一张16开的白纸,在白纸的中线上用铅笔画上一条直线,把平面镜垂直立在这条直线上。

2.在平面镜的一侧点燃蜡烛,从这一侧可以看到平面镜中所成的点燃蜡烛的像,用不透光的纸遮挡平面镜的背面,发现像仍然存在,说明光线并没有透过平面镜,因而证明平面镜背后所成的像并不是实际光线的会聚,是虚像。

3.拿下遮光纸,在平面镜的背后放上一只未点燃的蜡烛,当所放蜡烛大小高度与点燃蜡烛的高度相等时,可以看到背后未点燃蜡烛也好像被点燃了。说明背后所成像的大小与物体的大小相等。

4.用铅笔分别记下点燃蜡烛与未点燃蜡烛的位置,移开平面镜和蜡烛,用刻度尺分别量出白纸上所作的记号,量出点燃蜡烛到平面镜的距离和未点燃蜡烛(即像)到平面镜的距离。比较两个距离的大小。发现是相等的。

四、自我评估:该实验过程是合理的,所得结论也是正确无误。做该实验时最好是在暗室进行,现象更加明显。误差方面应该是没有什么误差,关键在于实验者要认真仔细的操作,使用刻度尺时要认真测量。

五、交流与应用:通过该实验我们已经得到的结论是,物体在平面镜中所成的像是虚像,像的大小与物体的大小相等,像到平面镜的距离与物体到平面镜的距离相等。像与物体的连线被平面镜垂直且平分。例如,我们站在穿衣镜前时,我们看穿衣镜中自己的像是虚像,像到镜面的距离与人到镜面的距离是相等的,当我们人向平面镜走近时,会看到镜中的像也在向我们走近。我们还可以解释为什么看到水中的物像是倒影。平静的水面其实也是平面镜,等等。

展开阅读全文

篇10:实验报告

范文类型:汇报报告,全文共 1663 字

+ 加入清单

一、实验目的和要求

1、掌握正确书写表达式、赋值语句的规则。

2、掌握InputBox与MsgBox的使用。

3、掌握Print方法和Format格式使用。

4、掌握单分支与双分支条件语句的使用。

5、掌握多分支条件语句的使用。

6、掌握For语句和Do语句的各种形式的使用。

7、掌握如何控制循环条件,防止死循环和不循环。

二、实验内容和原理

1、输入半径,计算圆周长和圆面积。

为了保证程序运行的正确,对输入半径要进行合法性检查,数据检查调用IsNumeric函数;若有错,利用MsgBox显示错误信息,通过SetFocus方法定位于出错的文本框处,重新输入;计算结果保留两位小数。

提示:使用Text1_KeyPress事件,按Enter键,返回参数“KeyAscii”的值为13表示输入结束。

2、随机产生三个整数,按从小到大的顺序显示。

3、计算π的近似值,π的计算公式为:

?2n?224262

π=2…× 2n-1?2n+11?33?55?7 注意:①、分别显示当n=10、100、1000时的结果,由此可见,此计算公式收敛如何?

②、要防止大数相乘时结果溢出的问题,将变量类型改为长整型 或实数型。

三、主要仪器设备

计算机

四、实验结果与分析

实验界面:

1、输入半径,计算圆周长和圆面积。

程序:

Private Sub Form_Activate

Text1.Text = "输入半径值"

Text1.SetFocus

Text1.SelStart = 0

Text1.SelLength = Len(Text1.Text)

End Sub

Private Sub Text1_KeyPress(KeyAscii As Integer) 圆面积,周长

Dim r

r = Text1.Text

Const PI = 3.14159

If KeyAscii = 13 Then

Cls

If IsNumeric(r) Then

Print "当圆的半径为"; r; "时:"

Print "圆面积为: "; Format(PI * r ^ 2, "0.00")

Print "圆面积为"; Format(PI * r ^ 2, "0.00")

Else

Text1 = "半径值输入有误"

End If

Text1.SetFocus

Text1.SelStart = 0

Text1.SelLength = Len(Text1.Text)

Else

End If

End Sub

运行结果:

输入值

:2

2、随机产生三个整数,按从小到大的顺序显示。

程序:

Private Sub Command1_Click

Cls

Dim x%, y%, z%, a%

Randomize

x = Int(Rnd * 101)

y = Int(Rnd * 101)

z = Int(Rnd * 101)

Print "随机产生三个整数: "; x; Spc(2); y; Spc(2); z; Spc(2)

If x > y Then

a = x: x = y: y = a

End If

If y > z Then

a = y: y = z: z = a

If x > y Then

a = x: x = y: y = a

End If

End If

Print "从小到大排序:  "; x; Spc(2); y; Spc(2); z; Spc(2)

End Sub

运行结果:

3、计算π的近似值

①、分别显示当n=10、100、1000时的结果,由此可见,此计算公式收敛如何?

②、要防止大数相乘时结果溢出的问题,将变量类型改为长整型或实数型。 程序:

Private Sub Command2_Click

Cls

Dim n As Long, PI, i As Long

n = 1

Do

n = n * 10

PI = 2

For i = 1 To n

PI = PI * ((2 * i) ^ 2 / ((2 * i - 1) * (2 * i + 1)))

Next i

Print "当n="; n; "时,π="; PI

Loop While n

End Sub

运行结果:

展开阅读全文

篇11:光电定向实验报告_实验报告_网

范文类型:汇报报告,全文共 2947 字

+ 加入清单

光电定向实验报告

摘要:采用四象限探测器作为光电定向实验,学习四象限探测器的工作原理和特性,同时掌握四象限探测器定向的工作方法。实验中,四象限探测器的四个限区验证了具有完全一样的光学特性,同时四象限的定向具有较良好的线性关系。

关键词:光电 定向 四象限探测器

1、引言

随着光电技术的发展,光电探测的应用也越来越广泛,其中光电定向作为光电子检测技术的重要组成部分,是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。光电定向方式有扫描式、调制盘式和四象限式,前两种用于连续信号工作方式,后一种用于脉冲信号工作方式。,由于四象限光电探测器能够探测光斑中心在四象限工作平面的位置,因此在激光准直、激光通信、激光制导等领域得到了广泛的应用[1]. 本光电定向实验装置采用激光器作为光源,四象限探测器作为光电探测接收器,采用目前应用最广泛的一种光电定向方式现直观,快速定位跟踪目标方位。定向原理由两种方式完成:1、硬件模拟定向,通过模拟电路进行坐标运算,运算结果通过数字表头进行显示,从而显示出定向坐标;2、软件数字定向,通过AD转换电路对四个象限的输出数据进行采集处理,经过单片机运算处理,将数据送至电脑,由上位机软件实时显示定向结果。

本实验系统是根据光学雷达和光学制导的原理而设计的,利用其光电系统可以直接、间接地测定目标的方向。采用650nm激光器做光源,用四象限探测器显示光源方向和强度。通过实验,可以掌握四象限光电探测器原理,并观测到红外可见光辐射到四象限探测器上的位置和强度变化。并利用实验仪进行设计性实验等内容,将光学定向应用到各领域中[2]。

2、实验原理

2.1、系统介绍

光电定向是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电

制导和光电测距等各个技术领域得到了广泛的应用。采用激光器作为光源,四象限探测器作为光电探测接收器,根据电子和差式原理,实现可以直观、快速观测定位跟踪目标方位的光电定向装置,是目前应用最广泛的一种光电定向方式。该系统主要由发射部分,光电探测器,信号处理电路,A/D转换和单片机,最后通过计算机显示输出。该系统结构框图如图1:

图1 系统结构框图

2.1.1激光器发射部分

光发射电路主要由光源驱动器、光源(主要是半导体光源,包括LED、LD等)、光功率自动控制电路(APC)等部分组成。用NE555组成的脉冲发生电路来驱动650nm的激光器。

2.1.2接收部分

接收部分主要由四象限探测器组成。四象限光电探测器是一种常用的精跟踪探测器,其基本原理是光电效应,利用半导体材料吸收光子能量引起的电子跃迁,将光信号转换为电信号.通常是利用集成光路光刻技术将完整的PN结光电二极管的光敏面分割成几个具有相同形状和面积、位置对称的区域,每个区域可以看作1个独立的光电探测器,其背面仍为一整片.理想情况下每个区域都具有完全相同的性能参量.象探测器光敏面形状有圆形和矩形.如图2所示[3].

(a)圆形光敏面QPD (b)矩形光敏面QPD

图2 四象限探测器实物图

如图3(a)所示,四象限光电探测器光敏面有4部分A,B,C,D.假设入射光斑为圆形且能量分布均匀,如图3

(b)所示,照射在光敏面上的光斑

被4个象限分成4个部分,4个象限的光斑面积分别为SA,SB,SC和SD.此时,由于光生伏特效应,在4个象限中产生与光信号对应的电信号,其对应电流大小分别为IA,IB,IC和ID.如图2(c)所示,当光斑中心在四象限光电

探测器上的位置改变时,光敏面各象限上的光斑面积也会改变,从而引起四象限探测器各象限输出电流强度的变化,通过一定的信号处理方法可以得到光斑能量中心位置相关信息.如图4所示.

图3 四象限探测器工作示意图

图4四象限探测器工作光路

根据输出电流强度可以计算出光斑能量中心位置.用σx和σy分别表示x和y

轴上根据四象限光电探测器输出信号经过一定的算法处理后的归一化偏移量,σx和σy与光斑能量中心实际偏移量的对应关系利用加减算法得[6-7]

x0KxK(SASB)(SBSD) SASBSCSD

(SASB)(SBSD) SASBSCSDy0KyK

式中K 为比例常数,光斑能量中心偏移量σx和σy仅与光斑在探测器上的面积有关,只要得到了各象限面积之间的比例关系,即可得到光斑能量中心位置的坐标.光斑在探测器上移动如图3(d)所示

2.2单脉冲定向原理

利用单脉冲光信号确定目标方向的原理有以下四种:和差式、对差式、

和差

比幅式和对数相减式。

2.2.1 和差式

这种定向方式是参考单脉冲雷达原理提出来的。

在图5中,四象限探测器与直角坐标系坐标轴x,y重合,目标(近似圆形的光斑)成像在四象限探测器上。当目标圆形光斑中心与探测器中心重合时,四个光电二极管接收到相同的光功率,输出相同大小的电流信号,表示目标方位坐标为:x=0,y=0.当目标圆形光斑中心偏离探测器中心,如图3,四个光电二极管输出不同大小电流信号,通过对输出电流信号进行处理可以得到光斑中心偏差量x1和y1。若光斑半径为r,光斑中心坐标为x1和y1,为分析方便,认为光斑得到均匀辐射功率,

总功率为P。在各象限探测器上得到扇形光斑面积是光斑总面积的一部分。若设各象限上的光斑总面积占总光斑面积的百分比为A、B、C、D。则由求扇形面积公式可推得如下关系[4]:

当2Xsin1(1) rX14x1时,ABCD1 rr

r即x1(ABCD) 4

r同理可得 y1(ABCD) 4

可见,只要能测出A、B、C、D和r的值就可以求得目标的直角坐标。但是在实际系统中可以测得的量是各象限的功率信号,若光电二极管的材料是均匀的,则各象限的光功率和光斑面积成正比,四个探测器的输出信号也与各象限上的光斑面积成正比。如图6,可得输出偏差信号大小为

Vx1KP(ABCD)

Vy1KP(ABCD)

对应于 x1k(ABCD)

y1k(ABCD)

图6 和差定向原理 式中krKP, K为常数,与系统参数有关。 4

2.2.2 对差式

将图4的坐标系顺时针旋转45o,于是得

x2=x1cos45o+y1sin45o=2kAC

y2=-x1cos45o+y1sin45o=2kBD

2.2.3 和差比幅式

上述两种情况中输出的坐标信号均与系数k有关。而k又与接收到的目标辐射功率有关。它是随目标距离远近而变化的。这是系统输出电压Vx1、Vy1并不能

够代表目标的真正坐标。采用下式表示的和差比幅运算可以解决这一问题。 x3k(ABCD)(ABCD)k(ABCD)(ABCD)

k(ABCD)(ABCD)k(ABCD)(ABCD)y3

式中不存在k系数。与系统接收到的目标辐射功率的大小无关,所以定向精度很高。

2.2.4 对数相减式

在目标变化很大的情况下,可以采用对数相减式定向方法。坐标信号为

x4=lgkABlgkCD=lgABlgCD

y4=lgkADlgkCB=lgADlgCB

可见,坐标信号中也不存在系数k,同样消除了接收到的功率变化影响。 当定向误差很小时,可以得到如下近似关系

x4ABCD

展开阅读全文

篇12:实验报告

范文类型:汇报报告,全文共 2171 字

+ 加入清单

一、原理

流感病毒颗粒表面的血凝素(HA)蛋白,具有识别并吸附于红细胞表面受体的结构,HA试验由此得名。HA蛋白的抗体与受体的特异性结合能够干扰HA蛋白与红细胞受体的结合从而出现抑制现象。

二、应用

该试验是目前WHO进行全球流感监测所普遍采用的试验方法。可用于流感病毒分离株HA亚型的鉴定,也可用来检测禽血清中是否有与抗原亚型一致的感染或免疫抗体。

三、缺点

只有当抗原和抗体HA亚型相一致时才能出现HI现象,各亚型间无明显交叉反应;除鸡血清以外,用鸡红细胞检测哺乳动物和水禽的血清时需要除去存在于血清中的非特异凝集素;需要在每次试验时进行抗原标准化;需要正确判读的技能。

四、试验步骤

1  阿氏(Alsevers)液配制

称量葡萄糖2.05g、柠檬酸钠0.8g、柠檬酸0.055g、氯化钠0.42g,加蒸馏水至100mL,散热溶解后调pH值至6.1,

69kPa 15min高压灭菌,4℃保存备用。(3.8%枸橼酸钠(3.8g枸橼酸钠,100ml超纯水),101 kPa,20min高压灭菌,4℃保存备用,保存期1个月)。

2  10%和1%鸡红细胞液的制备

2.1采血

用注射器吸取阿氏液约1mL(3.8%枸橼酸钠),取至少2只SPF鸡(如果没有SPF鸡,可用常规试验证明体内无禽流感和新城疫抗体的鸡),采血约2~4mL,与阿氏液混合(3.8%枸橼酸钠),放入装10mL阿氏液(生理盐水)的离心管中混匀。

2.2 洗涤鸡红细胞

将离心管中的血液经1500~1800 r/min 离心8分钟,弃上清液,沉淀物加入阿氏液(生理盐水),轻轻混合,再经1500~1800 r/min离心8分钟,用吸管移去上清液及沉淀红细胞上层的白细胞薄膜,再重复2次以上过程后,加入阿氏液20 mL(生理盐水),轻轻混合成红细胞悬液,4℃保存备用,不超过5天。

2.3  10%鸡红细胞悬液

取阿氏液保存不超过5天的红细胞,在锥形刻度离心管中离心1500~1800 r/min 8分钟,弃去上清液,准确观察刻度离心管中红细胞体积(mL),加入9倍体积(mL)的生理盐水,用吸管反复吹吸使生理盐水与红细胞混合均匀。(此步

可省略,直接配制1%红细胞)

2.4  1%鸡红细胞液

取混合均匀的10%鸡红细胞悬液1 mL,加入9 mL生理盐水,混合均匀即可。(根据检测血清的数量,估算一下需要的1%鸡红细胞量,可按0.3ml/每份血清)

3 抗原血凝效价测定(HA试验,微量法)

3.1 在微量反应板的1孔~12孔均加入25μl PBS(生理盐水),换滴头。

3.2吸取25μl抗原加入第l孔,混匀。

3.3从第1孔吸取25μl,病毒液加入第2孔,混匀后吸取25μl加入第3孔,如此进行倍比稀释至第11孔,从第11孔吸取25μl弃之,换滴头。

3.4每孔再加入25μl PBS(生理盐水)。

3.5每孔均加入25μl 体积分数为1%鸡红细胞悬液(将鸡红细胞悬液充分摇匀后加入)。

3.6振荡混匀,在室温(20~25℃)下静置40min后观察结果(如果环境温度太高,可置4℃环境下反应1小时)。对照孔红细胞将呈明显的钮扣状沉到孔底。

3.7结果判定  将板倾斜,观察血凝板,判读结果。

能使红细胞完全凝集(100%凝集,++++)的抗原最高稀释度为该抗原的血凝效价,此效价为1个血凝单位(HAU)。注意对照孔应呈现完全不凝集(-),否则此次检验无效。

4 血凝抑制(HI)试验(微量法)

4.1 根据3的试验结果配制4HAU的病毒抗原。以完全血凝的病毒最高稀释倍数作为终点,终点稀释倍数除以4即为含4HAU的抗原的稀释倍数。例如,如果血凝的终点滴度为1:256,则4HAU抗原的稀释倍数应是1:64(256除以4)。

4.2 在微量反应板的1孔~11孔加入25μl PBS(生理盐水),第12孔加入50μl PBS(生理盐水)。

4.3 吸取25μl血清加入第1孔内,充分混匀后吸25μl于第2孔,依次倍比稀释至第10孔,从第10孔吸取25μl弃去。

4.4 1孔~11孔均加入含4HAU抗原25μl,室温(约20℃)静置至少30min。

4.5 每孔加入25μl 1%的鸡红细胞悬液混匀,轻轻混匀,静置约40min(室温约20℃,若环境温度太高可置4℃条件下进行),对照红细胞将呈现钮扣状沉于孔底。

4.6 结果判定

试验成立的条件:只有阴性对照孔血清滴度不大于21og2,阳性对照孔血清误差不超过1个滴度,试验结果才有效。

以完全抑制4HAU抗原的血清最高稀释倍数作为HI滴度。

HI价小于或等于31og2判定HI试验阴性;HI价大于或等于41og2为阳性。

五、HI试验注意事项

1、合理选择抗原和对照阳性血清。针对Re-4和Re-5株疫苗免疫采用相应抗原和对照阳性血清。

同一亚型的禽流感病毒制成的抗原,如果毒株来源不同,则可能会存在抗原性差异,从而使检测同一血清的结果有差别。一般来讲,疫苗种毒株如果与抗原所用毒株相同时,则所测得的HI效价较高。

2、合理使用和保存抗原。反应试剂要按规定保存和使用,冻干的试剂应按照说明中规定的体积重新溶解并保存。要避免杂菌污染,因为污染所造成的非流感起源的凝集素也可与所有抗血清发生非特异反应。为避免反复冻融和细菌污染,可以无菌操作将试剂分装成小包装。

3、反应温度不能太高。若在37℃ (如温箱)下进行,

展开阅读全文

篇13:机能实验报告_实验报告_网

范文类型:汇报报告,全文共 3632 字

+ 加入清单

机能实验报告

Ach对离体家兔小肠运动作用

摘要

目的:观察乙酰胆碱对离体家兔小肠肠肌的影响和机制。方法:将离体小肠固定在离体小肠灌流装置里,在保证各影响因素不相互干扰的情况下,分别给予家兔离体肠肌标本生理盐水(Nacl)、Ach、阿托品、阿托品+乙酰胆碱刺激,完成每次刺激并出现明显现象后用38℃的台氏液冲洗肠肌标本,观察其收缩活动的特点并记录。结果:结果显示当滴加生理盐水(Nacl)刺激离体肠肌时,张力曲线没什么变化;当用乙酰胆碱刺激离体肠肌时,张力曲线则明显上升,且频率加快;当滴加阿托品刺激时,张力曲线明显下降,且频率减慢;当滴加乙酰胆碱加上阿托品刺激时,张力曲线变化较不规则。结论:乙酰胆碱(Ach)对离体家兔肠肌有增强其运动的作用,且作用于M受体。 中文关键词:离体家兔小肠肠肌;乙酰胆碱;张力曲线 Abstract:

Objective: to observe the acetylcholine on the influence and mechanism of intestinal muscle of rabbit small intestine in vitro. Methods: in vitro small intestine in vitro intestinal perfusion device fixed, in guarantee under the condition of each influence factor does not interfere with each other, in vitro intestinal muscle specimens were given the rabbit saline (Nacl), Ach, atropine, atropine + acetylcholine stimulation, complete with 38 ℃ after each stimulus and a significant phenomenon of Chinese Taiwans fluid colonics muscle specimens and observe the characteristics of its contraction activities and record. Results: the results showed that when add saline (Nacl) stimulation in vitro intestinal muscle, nothing change tension curve; When using the acetylcholine stimulation in vitro intestinal muscle, tension curves are obvious rise, and the frequency to speed up; When add atropine stimulation, tension curve decreased obviously, and slow frequency; When add the acetylcholine and atropine on, tension curve is irregular. Conclusion: acetylcholine (Ach) on in vitro rabbit intestinal muscle has enhanced the role of the movement, and the effects on M receptor.

[Key words]:Isolated rabbit intestinal muscle;Acetyl choline;Tension curve.

引言

消化道平滑肌与骨骼肌、心肌一样,具有肌肉组织共有的特性,如兴奋性、传导性和收缩性等。但消化道平滑肌兴奋性较低,收缩缓慢,富有伸展性,具有紧张性、自动节律性,对化学、温度和机械牵张刺激较敏感等特点。给予离体肠肌以接近与在体情况的适宜环境,消化道平滑肌仍可保持良好的生理特性。Ach能激动M受体,而阿托品能阻断M受体。

1.材料和方法

1,1材料:家兔、HSS-1(B)型恒温浴槽、台氏溶液、生理盐水、Ach、阿托品、通气机、超级恒温器、张力换能器、生物信号采集处理系统 ;

1.2方法:(1)实验装置准备和仪器参数设置:把台式液在恒温器中加热并保持到38℃左右,然后在麦氏浴槽中加入一定量的38℃左右的台式液。通气管接95%O2+5%CO2混合气体。用螺丝夹调节气体管道的气体流量,调节至浴槽中气体一个个逸出为止。换能器输出线接微机生物信号处理系统,设置好相关仪器参数;

(2)离体家兔十二指肠标本制作:取家兔一只,用木槌击其头部至晕,立即剖开腹腔,找到

十二指肠,取出十二指肠,置于冰冷的氧饱和的台氏液培养皿中,沿肠壁除去肠系膜,用5ml注射器取台氏液将肠内容物冲洗干净,然后将十二指肠剪成1-2cm数小段,换以新鲜,通入95%氧气和5%二氧化碳的混合气体的台氏液备用。把十二指肠管置于有台氏液的培养皿中,然后穿线结扎2cmz左右肠肌的两端,然后把通混合气体的机制放在浴槽中一会;

(3)标本固定:肠管一端连线系于浴槽固定钩上,然后放入38℃HSS-1(B)型恒温浴槽中,再将肠管另一端系结在张力换能器的悬梁壁上,调节肌张力1.87g,在其中加入20ml的38℃的台氏液; (4)实验观察:离体肠管在浴槽中稳定适当时间后,记录一段正常张力曲线。然后滴加0.2ml的生理盐水,观察并记录其曲线张力,反应稳定换液冲洗,以此方法依次做如表1.的添加实验;

(5)数据的记录:将实验所得的一组曲线进行选择,将曲线变化明显且能够较好反应实验结果的曲线进行编辑,并记录收缩频率、幅度等值,做成文档保存并进行拷贝。

2.结果

在正常情况下,离体肠肌收缩的幅度、频率、张力、时间及间隔都相对稳定,波形没有明显的变化;加入生理盐水后,离体肠肌张力曲线没有什么变化;加入Ach后,离体肠肌张力曲线明显上升,收缩幅度减小,频率加快;加入阿托品后,离体肠肌张力曲线下降,振幅减小,频率减慢;加入乙酰胆碱和阿托品混合液后,离体肠肌张力曲线变化不规则。 2.1生理盐水对离体家兔肠肌运动的影响

2.2乙酰胆碱对离体家兔肠肌运动的影响

2.3阿托品对离体家兔肠肌运动的影响

2.4阿托品5个波后加乙酰胆碱对离体家兔肠肌运动的影响

3.讨论

3.1在恒温通气的情况下,离体小肠平滑肌能自发地有节律地进行收缩,其收缩的幅度、频率、张力、时间及间隔都相对稳定,波形没有明显的变化。在此条件下,肠段生活的环境与在体内的环境相似,所以它的表现正常;

3.2乙酰胆碱(Ach) 对离体肠运动的影响:Ach是一种神经递质,能特异性的作用于各类胆碱能受体。Ach可明显兴奋胃肠道平滑肌,使其收缩幅度、张力、蠕动增加。其作用机制是:Ach作用于十二指肠M受体,使平滑肌Ca2+通道开放,Ca2+内流,Ca2+胞浆浓度增加,平滑肌收缩加快加强。表现为收缩力变大,频率增强;

3.3 加入阿托品,曲线快速下降,收缩频率变慢,幅度减小,离体小肠活动减弱。肠道主要受副交感神经支配,小肠有一个复杂的壁内神经丛,它的终末神经元属于胆碱能,主要与运动有关,可被阿托品阻断,从而使运动受到抑制。阿托品对胆碱受体都有高度亲和力,都可

以和受体产生可逆性结合,产生竞争性拮抗作用,阿托品与受体结合后,对节后胆碱能神经支配的效应细胞上的M受体有阻断作用,所以平滑肌收缩频率和收缩张力都减小。M-胆碱受体拮抗剂,能阻断节后胆碱能神经所支配的效应器细胞上的M受体,故可对坑Ach及拟胆碱药的M样作用。

3.4因为阿托品阻碍了Ach与M受体的作用,导致肠肌收缩的变化不规律。在实验的过程中,在滴加Ach和阿托品混合液时,离体肠肌的张力曲线没有明显的变化且不规律,有可能是因为加入的Ach和阿托品滴加顺序问题,使得两种液体没有很好的混合。

4.结论

一定浓度的Ach可以促进肠肌的运动,而且促进的作用是作用于M受体。

5.参考文献

5.1[1]陆源、林国华、杨午鸣.机能学实验教程.第2版.北京科学出版社.20xx.160~1625.2[2]张志雄.生理学.第1版.上海.科学技术出版社,20xx.105~111

【注】:因电脑死机导致小组实验操作数据丢失导致实验失败,故小组各自分散进入别的小组进行实验操作。本实验报告数据来自于第八组。

1.从收缩的幅度越来越小可以看出细胞的兴奋性越来越小,也可能是台氏液冲洗肠肌标本不充分,导致药品液的混合,从而刺激作用不明显;

2.适量浓度的肾上腺素和盐酸有抑制肠肌细胞兴奋的作用,适量浓度的氢氧化钠有促进其兴奋的作用。

展开阅读全文

篇14:实验报告参考

范文类型:汇报报告,全文共 2275 字

+ 加入清单

还记得开始实习的第一天我们就学习了工业安全这个项目,看到那么多真实的工业安全事故让我们对接下来2周的“噩梦”简直不敢想象,如果真的不幸在这里实习的时候出点什么事故或者真的就象影片里的一样就那样“英年早逝”的话,那不是...我们大家都为此捏了一把汗。“虽然实习中是会有一点危险,毕竟我们接触的都是那些多多少少有些危险性的机器,在高转速高压力的情况下稍微一不小心就会出现危险事故的,然而只要我们按照操作规范以及老师的指导来做的话是不会出现意外的”,听完老师的介绍我们总算可以稍微放心一点,第一天就在这样的忐忑夹杂兴奋的情绪中过去了。

第二天是我们两周的实习中最让我感兴趣的——锻造(其实我们都叫打铁)。初次去那个热加工工厂着实让我们吓了一跳:黑黑的什么都看的不清楚,而且那里很破旧的样子,跟那些老电影里的工厂简直是一个样,让我怀疑时光是否倒退了还是我自己还没有睡醒(后来才知道那个地方不是我们实习的车间,而是华工的一个热加工工厂)。当我们去到实习车间的时候老师已经一脸和蔼的站在那里等我们了“你们是来锻造实习的是吧?车间在这边,过来吧。”老师边说着边招呼着我们去车间参观,边开始介绍起我们的实习内容——打铁,当然少不了还有我们的工具——空气锤。我们的当天的任务就是把一根80mm长,25mm直径的圆形铁棒打成一个20mm厚的六边形。听起来很简单是吧?我开始时也觉得没什么了不起的,不就是一个六边形嘛,我一上午就打完啦,还用的着一天时间?!所以我都不以为意听完老师的讲解之后我们就开始了我们的铁匠生涯,说实话,当那块红色的铁段从那个电炉里拿出来的时候我确实有点担心:这么高温度的东西万一不小心掉了碰到人怎么办?(不过还好大家都比较认真,没出什么事故)接着米兰小铁匠的歌声就飘扬在我们的实习车间了,“叮叮当当,叮叮当当”一首悦耳的打铁之歌,呵呵。但是打铁虽然说是简单,但是要打成型却没那么简单,我们从上午打到下午也打的不是很符合规格要求,还好后来老师过来指导我们,才把那个零件打出来了。看着自己的劳动成果,大家都忍不住拿出手机拍下来回去留念。

第二天的实习,带着一点累和十分的满足与自豪:我们是新一代打铁匠!

模具那个实习也是我觉得印象较为深刻的,用沙子砌出零件的外形然后就可以用来灌注铁水铸成我们需要的零件。说是很简单,而且历史也很悠久――从商朝就有了这种铸造技艺(之前很多青铜铸件都是用这种方法铸成的)。老师用沙子和简单的工具三下五除二,一下子就把那个模具铸出来了,让我们也是信心满满的跃跃欲试。但是当我们自己亲自上场的时候才发现:怎么老师说的那套是骗人的?我们好像也是按照老师的方法来做,但是那个铸件怎么做还是有点问题,要么一不小心就这边倒沙,要么那边的形状老是看着不顺眼只好硬着头皮一步步地重做了一次之后才发现:原来在做的过程种有些东西是自己不小心没有做好的,有时候是那个沙子没有盅实,有时候是那个隔型沙没有放好。累了一天,总算拿了个A+,也算是这一天的最大安慰吧。(不过实在是太累了,因为整天都是蹲在地上的啊)最累的实习当属钳工!!!我发誓!!!我们p6的刚好是最后一天最累――钳工!将一段铁棒锯下11mm之后再将其加工成一个10mm厚的六边形螺母。然而那个螺母我是怎么磨都磨不平。磨不平也就罢了,后来我还把那个尺寸弄错,本来应该19mm的宽度我留下了22mm,结果等我发现时候已经没有多少时间给我修整自己的工件。但是不修改也不行啊!所以最后的时间我几乎以光速在磨那个工件,简直磨的日月无光天昏地暗,那阵势不亚于大战在即的肃杀或是两军交战的“血腥”(那时候简直是磨红了眼睛)令我遗憾的是:最终的零件还是不符合规格。所以钳工是我整个实习中最遗憾的一个。

实习一天接一天,每天都有不同的实习内容,加工中心,汽车知识,磨床齿轮,模具CAD,每天都让我们学到不同的知识:首先通过这次实习我们了解了现代机械制造工业的生产方式和工艺过程。熟悉工程材料主要成形方法和主要机械加工方法及其所用主要设备的工作原理和典型结构、工夹量具的使用以及安全操作技术。了解机械制造工艺知识和新工艺、新技术、新设备在机械制造中的应用。其次在工程材料主要成形加工方法和主要机械加工方法上,具有初步的独立操作技能。在了解、熟悉和掌握一定的工程基础知识和操作技能过程中,培养、提高和加强了我们的工程实践能力、创新意识和创新能力。

这次实习,让我们明白做事要认真小心细致,不得有半点马虎。同时也培养了我们坚强不屈的本质,不到最后一秒决不放弃的毅力!第五培养和锻炼了劳动观点、质量和经济观念,强化遵守劳动纪律、遵守安全技术规则和爱护国家财产的自觉性,提高了我们的整体综合素质。最后在整个实习过程中,老师对我们的纪律要求非常严格,制订了学生实习守则,同时加强清理机床场地、遵守各工种的安全操作规程等要求,对学生的综合工程素质培养起到了较好的促进作用。

当然实习除了收获了知识,开拓了眼界之外,也还是有些许遗憾的:比如因为实习时间有限,有些实习工种我们没有机会接触啦(比如我本人对那个化学加工就非常感兴趣啦,可惜没有机会去实习,所以一直很遗憾);还有一些实习过程中会有一些自己的成品,虽然不一定很好看或者很符合要求,但是那毕竟是自己的劳动成果,所以我们会希望能够有机会保留自己的劳动结晶,但是几乎所有的实习成品都不能带离实习车间,所以这个也是个遗憾;其他的我个人的建议是希望实习时候能够给学生更多的自由发挥自由设计的机会,让每个学生都能够在实习过程中发挥出自己的聪明才智,当然实习过程也就会更加有吸引力咯。

展开阅读全文

篇15:实验报告

范文类型:汇报报告,全文共 1575 字

+ 加入清单

实验目的

1.掌握可逆电池电动势的测量原理和电位差计的操作技术

2.学会几种电极和盐桥的制备方法

3.学会测定原电池电动势并计算相关的电极电势

实验原理

凡是能使化学能转变为电能的装置都称之为电池(或原电池)。

可逆电池应满足如下条件:

(1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。

因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。

可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为 φ+,负极电势为 φ-,则电池电动势 E = φ+ - φ- 。

电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。

以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。

仪器和试剂

SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和 KCl 溶液。

实验步骤

1. 记录室温,打开SDC-II型数字式电子电位差计预热 5 分钟。将测定旋钮旋到“内标”档,用1.00000 V电压进行“采零”。

2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。

3. 半电池的制作:向两个 50 mL 烧杯中分别加入 1/2 杯深 0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。

4. 原电池的制作:向一个 50 mL 烧杯中加入约 1/2 杯饱和氯化钾溶液,将制备好的两个电极管的弯管挂在杯壁上,要保证电极管尖端上没有气泡,以免电池断路。

5. 测定铜锌原电池电动势:将电位差计测量旋钮旋至测定档,接上测量导线,用导线上的鳄鱼夹夹住电极引线,接通外电路。

从高位到低位逐级调整电位值,观察平衡显示。在高电位档调节时,当平衡显示从OVL跳过某个数字又跳回OVL时,将该档退回到低值,再调整下一档。在低电位档调节时,调节至平衡显示从负值逐渐小,过零后变正值时,将该档回到低值,继续调整下一档。直至调整到最后一位连续调节档。当平衡显示为零或接近于零时,读出所调节的电位值,此即该电池的电动势。

6. 测定电极电势:取出饱和甘汞电极,拔去电极头上的橡皮帽,置于烧杯中。将测量导线的两个鳄鱼夹分别夹在锌电极和甘汞电极上,同上法测定电动势。再同样测量由铜电极和甘汞电极组成的电池的电动势。根据所测得的电动势及甘汞电极的电极电势,计算所测量电极的电极电势。

思考题

1.如何正确使用电位差计?

2.参比电极应具备什么条件?

3.若电池的极性接反了,测定时会发生什么现象?

4.盐桥有什么作用?选用作盐桥的物质应有什么原则?

展开阅读全文

篇16:粗盐的提纯实验报告

范文类型:汇报报告,全文共 632 字

+ 加入清单

一、实验目的:

1。掌握溶解、过滤、蒸发等实验的操作技能.

2。理解过滤法分离混合物的化学原理.

3。体会过滤的原理在生活生产等社会实际中的应用.

二、实验原理:

粗盐中含有泥沙等不溶性杂质,以及可溶性杂质如:Ca2+,Mg2+,

SO42— 等.不溶性杂质可以用过滤的方法除去,然后蒸发水分得到较纯净的精盐.

三、仪器和用品:托盘天平,量筒,烧杯,玻璃棒,药匙,普通漏斗,铁架台(带铁圈),蒸发皿,酒精灯,火柴,蒸发皿。

试剂:粗盐、蒸馏水。

四、实验操作:

1。溶解:

①称取约4g粗盐

②用量筒量取约12ml蒸馏水

③把蒸馏水倒入烧杯中, 用药匙取一匙粗盐放入烧杯中边加边用玻璃棒搅拌,一直加到粗盐不再溶解时为止.观察溶液是否浑浊.

2。过滤:

将滤纸折叠后用水润湿使其紧贴漏斗内壁并使滤纸上沿低于漏斗口,溶液液面低于滤纸上沿,倾倒液体的烧杯口要紧靠玻璃棒,玻璃棒的末端紧靠有三层滤纸的一边,漏斗末端紧靠承接滤液的烧杯的内壁。慢慢倾倒液体,待滤纸内无水时,仔细观察滤纸上的剩余物及滤液的颜色.滤液仍浑浊时,应该再过滤一次.

3。蒸发

把得到的澄清滤液倒入蒸发皿.把蒸发皿放在铁架台的铁圈上,用酒精灯加热。 同时用玻璃棒不断搅拌滤液等到蒸发皿中出现较多量固体时,停止加热.利用蒸发皿的余热使滤液蒸干.

4。 用玻璃棒把固体转移到纸上,称量后,回收到教师指定的容器.

五、现象和结论:

粗盐溶解时溶液浑浊,蒸发时蒸发皿中随着加热的时间的延长,蒸发皿中逐渐析出晶体。

结论:过滤可以出去粗盐中的不溶性杂质。

展开阅读全文

篇17:《变形监测数据处理》课程实验课指导书含实验报告

范文类型:汇报报告,全文共 395 字

+ 加入清单

测量实验注意事项

1. 实验之前必须阅读有关的教材及实验指导书,了解实验内容要求和步骤。

2. 实验记录应用正楷填写,不可潦草,并按规定的填写日期、仪器名称、仪器号码、使用人、仪器状态。

3. 使用计算机过程中要按照指导教师的要求去做,不可随意删除计算机内其它文件。不可随意更换页面。

4. 没经过指导教师与实验室老师的允许不可随意拷入其它软件。

5. 实验结束后应把实验报告上交指导教师审阅,符合要求方可离开。

6. 实验结束后应关闭电源,清理桌面、清扫地面。

实验室仪器操作细则

1. 对实验室内的计算机必须爱护,不可随意搬动。

2. 使用时先打开电源。

3. 点击所要使用遥感和地理信息系统的有关软件。

4. 实验完成之后保存实验图象,退出使用界面。

5. 实验完毕应关闭计算机电源。

6.一切仪器若发生故障,应及时向指导教师或实验室工作人员回报,不得自行处理,若有损坏,遗失应写书面检查,进行登记、酌情赔偿。

展开阅读全文

篇18:2024实验教师述职报告

范文类型:汇报报告,适用行业岗位:教师,全文共 1572 字

+ 加入清单

本人20xx年6月毕业于常州技术师范学院计算机科学教育专业,获学士学位。2019年8月分配至无锡市河埒中学6年来,一直从事中学计算机的教学工作。2019年8月被评为中学计算机二级教师职称,聘任期将近五年,符合申报中学一级教师的条件,下面将本人任现职以来的工作小结如下:

一、思想政治和组织纪律

思想政治上积极向上。关心国家大事。积极参加政治学习和学校组织的各项政治活动。在此间,认真学习马列主义、毛泽东思想、邓小平理论,学习关于三个代表的重要讲话,坚持"思、识、行"相统一,提高坚持"三个代表"的素质、能力。

遵纪守法,严格执行学校的各项制度。尊敬师长,严于律己。为人师表,努力以良好的师德修养影响学生。以“八荣八耻”时刻警示自己,为创建新时期和谐社会作出努力。

二、教学工作

在教学工作中,我能虚心主动地向老教师请教,学习专业技能和教学方法,培养自己严谨的教学态度。在教学过程中,我认真备好每一节课,上好每一节课,在教学实践中,摸索体会教学方法。坚持运用电子教案及电教手段,教学目的明确。在学生实际操作时,我注意巡视,耐心主动辅导学生,及时解决学生在学习中的问题。教学中注重启发调动学生学习的积极性,培养学生的灵活创新的学习意识,使他们保持积极努力求知的心态,因此教学效果较好,顺利通过了青年教师业务达标活动的考核。

教学软件的设计与制作是现代教育中不可缺少的一个部分,我经常帮助老师们制作其他专业的教学课件,帮助他们使用计算机软件。组织和参与了老师们各类计算机考核的培训辅导工作。

积极参加继续教育,树立终身学习观念。获继续教育培训优秀学员等。积极参加上级和学校组织的教研教学活动。论文《计算机课中关于自主学习的研讨》获2019年江苏省优秀教育论文三等奖;论文《提高课堂教学效果的几点浅见》获2019年无锡市“中小学信息技术教育、教研研究论文评比”三等奖;论文《发现教学法的原理与中学计算机教学实践》获2019年学校教研工作年会优秀论文三等奖;论文《对优化信息技术教学的几点思考》获2019-2019年度校教科研大会论文评比优秀奖。

关心培养学生,全心全意搞好教学,完成教学任务。平时注重学习教育理论,能刻苦钻研教学业务,主动投身到教科研之中,进行教改实践,不断改进教学方法,提高教学质量。积极组织学生参加省市信息学奥林匹克的竞赛活动,获省级三等奖2人,获市级一等奖8人,二等奖6人,三等奖9人。通过参加这些活动提高了学生的学习热情和培养学生的实际操作能力。2019年5月组织初二年级学生参加了市会考试点工作,所教班级的学生也获得了较好的成绩。

认真组织和开展校园“绿色网吧”活动,让学生在上网遨游和成功交流中,产生充实的情感体验,在获得文化知识和操作技能时,感悟愉悦的人文情怀

三、教育工作

在平时教学中,我能注意对学生进行思想品德教育。教育内容与教学内容衔接自然。

对学生的听课情况,我及时与班主任联系,对于学生中不重视副课的现象及时引导、转化。对学生平时上机的违规现象能及时制止,耐心、和颜悦色地批评教育。爱学生,对学生无亲梳、无偏见,与学生感情融洽,建立了良好的师生关系,受到学生的敬重。

四、机房的管理和电教资料室的管理:

对机房的管理是我教学以外的工作之一,为管好机房,我每天下班前都整理机房,使之整洁有序;定期组织打扫,保持卫生与清洁;做好计算机管理维修记录;并能自己动手解决软、硬件问题。工作虽繁琐,却能锻炼自己的韧性,培养细致入微的观察能力。

20xx年9月以来,我接手管理学校的电教资料室,重新整理了电教资料室的各类资料,实现了电教资料室的计算机化管理。

以上是本人任现职以来思想、工作方面的总结,虽然取得了一定的工作成效,但我还要加倍努力,当然其中也许难免有些不足,我一定会在今后的工作中尽力克服,并不断地完善自我,努力使自己成为一名优秀的人民教师。

展开阅读全文

篇19:实验室制取氧气的实验报告_实验报告_网

范文类型:汇报报告,全文共 1218 字

+ 加入清单

实验室制取氧气实验报告

实验者: 实验日期:

一、实验目的:

1、掌握实验室制取氧气的方法

2、掌握氧气的性质

二、实验器材:导气管,试管,集气瓶,酒精灯,水槽,燃烧匙 三、实验药品:氯酸钾,二氧化锰,木炭,硫粉,红磷,铁丝 MnO四、实验原理:2KClO3 2 2KCl+3O2

三、实验步骤:

查:检查装置气密性 ,双手握住试管,观察玻璃管内水柱变化。

装:将药品装入试管,在试管口放一小团棉花,装好带导管的软木塞。 定:将试管固定在铁架台,试管夹应夹在离试管口1/3处,试管口应向下。

点:点燃酒精灯,先来回移动,使试管均匀受热,然后将火焰集中在药品处加热。

收:采用排水法收集氧气,理由是氧气不溶于水。收集四瓶氧气。 离:收集满氧气后,先将导管移开水槽。 熄:再用灯帽熄灭酒精灯。

四、氧气性质实验操作:

1、观察氧气的颜色和气味:无色无味,能使带火星的木条复燃。

2、娶一小块木炭,在酒精灯上烧至发红,然后将木炭插入集气瓶内。

观察现象:剧烈燃烧,发出白光,放出热量,说明集气瓶中有纯净的氧气存在。反应完后,向集气瓶中加入澄清石灰水,振荡后,现象为澄清石灰水变浑浊,说明木炭跟氧气反应后产生CO2。 化学方程式为:C+O2 点燃 CO2

3、用细铁丝螺旋绕在燃烧匙是,另一端绕一根火柴,点燃火柴,待火柴燃烧尽时,立即放

入留有水,充满氧气的集气瓶中。

观察现象:红热的铁丝剧烈燃烧,火星四射,放出大量热,生成黑色固体。化学方程式为: 3Fe+2O2 点燃 Fe3O4

4、取少量硫粉在燃烧匙上,在酒精灯上加热,硫粉熔化,迅速将燃烧匙伸进充满氧气的集气瓶中。

观察现象:发出明亮的蓝紫色火焰,放出热量,生成有刺激性气味的气体。化学方程式为:S+O2 点燃 SO2

5、取少量磷粉在燃烧匙上,在酒精灯上加热至发红,迅速将燃烧匙伸进充满氧气的集气瓶中。

观察现象:剧烈燃烧,发出明亮光辉,放出热量,生成白烟。化学方程式为:

4P+5O2 点燃 2P2O5

五、讨论

1、在试验时,为什么会出现下列问题,要怎么解决?

A、点燃酒精灯后,立即将火焰集中在试管内的药品部位加热,不久试管发生破裂。 答:这是因为试管底部受热不均匀,局部受热过高造成试管的破裂。在实验时正确的操作是:

点燃酒精灯,先来回移动,使试管均匀受热,然后将火焰集中在药品处加热。

B、看到水槽内导管出现气泡,立即收集,收集后用带火星木条插入瓶口内试验,结果木条没有复燃。 答:这是因为没有充分排尽导气管中的空气,造成收集的氧气不纯。在实验时正确的操作是:待导气管口出现连续气泡是才开始收集氧气。

2、试验操作过程中为什么要注意以下几点:

A、试管口为什么要略向下倾斜?

答:这是因为固体中含有一定量的结晶水,加热时会有水蒸气产生,如果管口朝上,水蒸气

就会在管口附近凝集成水珠,量多时会流下来,因为试管底是热的,所以可能会引起试管爆裂。

B、收集好氧气,为什么要先把导管从水槽中移开,再熄灭酒精灯? 答:这是为了防止倒流的发生。

展开阅读全文

篇20:食醋中总酸量的测定实验报告_实验报告_网

范文类型:汇报报告,全文共 4575 字

+ 加入清单

食醋中总酸量的测定实验报告

篇一:食醋中总酸量的测定实验报告

一、实验目的

初步学会用手持传感器技术测定食醋中的总酸量;会组织中学生用传感器技术测定食醋中的总酸量教学过程。

二、实验原理

待测的食醋中醋酸及其他有机酸可换算为醋酸总量,都可以被标准的强碱NaOH溶液标定:C待测V待测=C标准V标准 。当溶液中的电解质含量恒定时,电导率亦恒定,当生成难电离物质时,电导率下降,pH传感器就是把电信号转化为化学信息来测定其中的总酸度的。

三、仪器与药品

pH传感器,数据采集器,自动计数器,50mL酸式滴定管,电磁搅拌器,铁架台,250mL烧杯,量筒;有色食醋原液,经标定的0.1mol/L NaOH溶液,去CO2的蒸馏水。

四、实验操作过程

1.实验过程

设备连接

(1)采集器与传感器,使用1394线(传感器连接线)连接;

2号接口连接--光电门传感器

3号接口连接--pH传感器

按键说明

(1)电源开关键;

(2)重启键;

(3)电源指示灯;

(4)传感器指示灯;

(5)传感器接口;

(2)采集器与12V外接电源连接(不带屏幕采集器,此步骤可不操作)。

2准备阶段:标定

在采集器3号传感器接口上连接好pH传感器,然后按下采集器电源开关,打开数据采集器,进入如下界面:

点击右下角“系统设置”,进入如下界面:

选择系统设定里的“探头标定”选项,并点击“探头校准工具”按钮:

点击“建立连接”按钮(点击后变灰色,显示连接成功,即可开始标定)。

传感器标定:⑴ 拨开电极上部的橡胶塞,使小孔露出。否则在进行校正时,

会产生负压,导致溶液不能正常进行离子交换,会使测量数据不准确。

⑵ 将电极取出,用滤纸把电极上残留的保护液吸干。将电极放进pH=4.00(邻苯二甲酸氢钾)的缓冲液中,点击采集器上pH=4下的“开始标定”按钮,5-10秒后,点击“结束标定”。

⑶ 将电极放在装有蒸馏水的烧杯内,清洗后把电极从装蒸馏水的烧杯内拿出来用滤纸把电极上残留的蒸馏水吸干。稍后将电极放进pH=9.18(四硼酸钠)的缓冲液中,点击采集器上pH=9下的“开始标定”按钮,5-10秒后,点击“结束标定”。最后点击一次“写标定值”。

⑷ 验证标定:标定完成,进入传感器测量界面,将探头放入pH=6.86(混合磷酸盐)的溶液中,检测标定是否成功。观察读数稳定后读数在6.70-7.00之间即可认为标定比较准确,否则应重新标定。

数据采集器关机或重启后,pH传感器须重新标定。

3开始实验

往酸式滴定管中注入有色食醋溶液。

再往烧杯中注入标定过的40mL NaOH溶液,把烧杯放于磁力搅拌器上。如图:

注意:光电门传感器红色线接液滴计数器

开机后,进入如下图界面:

点击“通用”,进入通用实验界面:

点击左上角“打开模版”依如下路径选择实验:

打开模版—SDMEM—实验模版—化学实验—酸碱中和滴定—酸碱中和滴定(xmlp文件)

篇二:食醋中总酸量的测定实验报告

一、实验目标

1.初步学会用传感器技术测定食醋中的总酸量;

2.会组织学生用传感器技术测定食醋中的总酸量教学过程。

二、实验原理

食醋中的主要成分是醋酸,此外还含有少量的乳酸等有机酸,醋酸是弱酸,用传统的pH试纸或酸度计测定食醋中的总酸量,总是要比实际浓度低,误差很大。本实验将使用传感器技术来测定食醋中的总酸量,该方法不怕待测物中的颜色干扰,测定既快又不用加指示剂。

pH传感器是用来检测被测物中氢离子浓度并转换成相应的可用输出信号的传感器,通常由化学部分和信号传输部分构成。pH传感器利用能斯特(NERNST)原理。

待测的食醋中醋酸及其他有机酸可换算为醋酸总量,都可以被标准的强碱NaOH溶液滴定:C待测V待测=C标准V标准 ,用化学方程式表示为:

CH3COOH + NaOHCH3COONa + H2O

当溶液中的电解质含量恒定时,电导率亦恒定,当生成难电离物质时,电导率下降,pH传感器就是把电信号转化为化学信息来测定其中的总酸度的。

传感器简介:传感器是一系列根据一定的物理化学原理制成的物理化学量的感应器具,它能把外界环境中的某个物理化学量的变化以电信号的方式输出,再经数据模拟装置转化成数据或图表的形式在数据采集器上显示并储存起来。中学化学教学中进行科学探究常用到的传感器有温度传感器、pH传感器、溶解氧传感器、电导率传感器、光传感器、压力传感器、色度传感器等。传感器技术的特点:便携,实时,准确,综合,直观。

三、仪器与药品

仪器:GQY数字实验室教学设备(由pH传感器、数据采集器、液滴计数器、光电门传感器组成)、50mL酸式滴定管、电磁搅拌器、铁架台、250mL烧杯、量筒、250ml容量瓶、玻璃棒。

药品与试剂:有色食醋原液、0.1mol/L NaOH溶液、去CO2的蒸馏水、pH=4和pH=9.18的缓冲溶液、pH=6.86的混合磷酸盐溶液。

四、实验操作过程

1.设备连接

(1)采集器与传感器,使用1394线(传感器连接线)连接:2号接口连接光电门传感器,3号接口连接pH传感器。

(2)光电门传感器红色线(或有红色标记的)一端连接液滴计数器,黑色线(无标记的)接一光电门,调节光电门传感器为计数模式(第1个和第3个灯同时亮)。

2.设备操作

(1)开启采集器。

(2)传感器标定

在采集器3号传感器接口上连接好pH传感器(注意:此时需断开光电门传感器与数据采集器的连接),开机后,点击右下角“系统设置”,选择系统设定里的“探头标定”选项,并点击“探头校准工具”按钮,点击“建立连接”按钮(点击后变灰色,显示连接成功,即可开始标定)。

(3)标定的操作步骤:

①拔开电极上部的橡胶塞,使小孔露出。否则在进行校正时,会产生负压,导致溶液不能正常进行离子交换,使测量数据不准确。

②将电极取出,用滤纸把电极上残留的保护液吸干。将电极放进pH=4.00(邻苯二甲酸氢钾)的缓冲液中,点击采集器上pH=4下的“开始标定”按钮,5~10秒后,点击“结束标定”。

清洗后把电极从盛蒸馏水的烧杯内拿出 ③将电极放在盛有蒸馏水的烧杯内,来,用滤纸把电极上残留的蒸馏水吸干。稍后将电极放进pH=9.18(四硼酸钠)的缓冲液中,点击采集器上pH=9下的“开始标定”按钮,5~10秒后,点击“结束标定”。最后点击一次“写标定值”。

④ 验证标定:标定完成,进入传感器测量界面,将探头放入pH=6.86(混合磷酸盐)的溶液中,检测标定是否成功。读数稳定后观察读数在6.70~7.00之间即可认为标定比较准确,否则应重新标定。

标定结果:电极放进pH=4.00的缓冲液中,标定结束后显示的数据为23667;电极放进pH=9.18的缓冲液中,标定结束后显示的数据为29822;探头放pH=6.86的溶液中,显示的pH为6.901。

注意事项:①pH电极使用一段时间后,不对称电位将会发生很大改变,故必须定期校准。用pH缓冲溶液标定是为了消除不对称电位的影响;②数据采集器关机或重启后,pH传感器须重新标定。

(4)滴定准备及滴定操作步骤

①退出到开机界面,点击“通用”,进入通用实验界面,点击左上角“打开模版”,依如下路径选择实验:打开模版—SDMEM—实验模版—化学实验—酸碱中和滴定—酸碱中和滴定(xmlp文件),进入滴定实验界面。

②检查传感器是否正常连接:当传感器正常连接时,对应的传感器接口指示灯常亮。当点击开始实验时,传感器接口指示灯为闪烁状态,通过此指示灯可判断传感器是否正常工作。

③长按光电门传感器上按钮,3个灯同时亮时放开清零数据。

注意事项:光电门应该放在空处,不被任何物体挡光;滴定前长按光电门传感器上按钮清零数据,清零数据时不要更改模式。

④在盐酸一栏中输入烧杯中NaOH溶液的浓度(0.1mol/L),在待测液体积一栏中输入烧杯中NaOH溶液的体积(50mL);

⑤点击“开始/停止”按钮,开始实验。打开磁力搅拌器(最好在实验开始前调好位置或打开,不要让磁子在转动时碰到传感器电极),然后转动酸式滴定管旋钮,让滴定管中溶液以不连续状态滴入烧杯中。

⑥当整个实验结束后,点击“开始/停止” 按钮,停止实验。点击“刷新数据”,进入实验数据界面可看到整个实验过程中所有实验数据,最后点击“保存/转发”按钮,保存实验数据到采集器SD卡根目录下。通过计算机端“单机运行平台”软件可在电脑端打开此数据,求导值的最低点横座标即为滴定终点的体积,输入该滴定终点体积(之前已输入烧杯中溶液体积和浓度),点击软件上“重新计算”按钮,可计算出待测溶液浓度。

注意事项:①滴定时,酸式滴定管的尖嘴与计数器挡光孔必须垂直对齐;②滴定开始后注意“滴定体积”一栏中有无体积变化,同时在“pH”一栏会开始显示pH值。如溶液已开始滴入烧杯,而“滴定体积”一栏无数据,则说明液滴通过计数器时未引起变化,需要调节装置,让液滴通过计数器挡光孔,并更换溶液清除数据重新开始实验。如果“pH”一栏数据不变或为非数字时,说明传感器标定不正确,需要重新标定,再开始实验;③滴定速度的控制:在接近终点时,要注意

放慢速度,以便观察到终点。④酸碱的浓度差别不要太大 ,否则实验将较难控制,结果误差较大。

五、数据处理

1. 溶液体积与pH关系图

Y Axis Title 图1 体积-pH关系图 pH X Axis Title体积/mL

2. 溶液体积与pH对数的关系图

2 pH

3. 计算过程

(1)

由数据图可知:a=0.04ml,b=12.67ml

V待 =(b-a)÷10×格数=(12.67-0.04)÷10×5.2=6.57ml

(2)

NaOH溶液体积: V标准 = 50ml

NaOH溶液浓度: C标准 =0.1mol/L

(3)

又C待测V待测=C标准V标准

所以C待测 = C标准V标准 /V待测 =0.1mol/L×50ml /6.57ml=0.761mol/L 0.671×60.05×100

1000 总酸度==4.57g/100ml

六、相关文献与重点文献综述

[1]曹宏梅,赖红伟,董树国.用指示剂法测定食醋中的总酸度的实验改进研究[J].中国科技信息,20xx,(11):1-2.

[2]黄春.浅谈食醋中总算的测定方法[J].计量与测试技术,20xx,(04):1-2.

[3]刁春霞,黄为红.食醋中总酸度测定结果的不确定度评定[J].中国酿造,20xx,(06):1.

[4]高向阳,孔欣欣,李颖.恒pH法连续测定酱油与食醋中的总酸度和粗蛋白[J].20xx,(09):99-104.

[5]陈瑶,薛月菊,陈联诚,陈汉鸣,王楷,黄柯. pH传感器温度补偿模型研究[J]. 传感技术学报,20xx,(08):1034-1037.

[6]王刚,万其远,叶永康 化学传感器的进展[J]. 分析科学学报,1999,(03):246-251.

[7]魏锐,王磊等 利用 传感器研究中和反应过程中pH的突变[J]. 化学教育,20xx,(04):59-61.

[8]杨承印,何颖,高双军,等 基于pH传感器测定食醋总酸量的实验研究

[J]. 化学教育,20xx,(03):62-64.

文献综述及评价:

[1]食醋中总酸度的测定必开的分析化学实验项目之一,针对此实验的测定方法存在不足之处,笔者利用电位滴定法对总酸度的测定进行了改进研究,通过改进解决了有色的食醋溶液滴定终点颜色难判断的问题,有效提高了测定结果的准确

展开阅读全文